Sorry, you need to enable JavaScript to visit this website.

Distributed Generation

SUNY University at Stony Brook

Hybrid Electrochemistry and Advanced Combustion for High-Efficiency Distributed Power (HE-ACED)

Tandem PV, Inc.

Advanced Processing Tool to Unlock Perovskite Photovoltaics

Tandem PV will develop and test an advanced processing tool that integrates high-throughput solution deposition and precise drying to deposit large-area perovskite thin films of exceptional optical and electronic quality. Production of these films on large areas is a critical step towards perovskite-Si tandem PV cells that can achieve significantly higher efficiency than traditional Si PV cells. Small-scale perovskite PV device fabrication typically occurs using a spin-coating process, but the process is not easily scalable. The ability to deposit perovskite PV devices with a large-scale production technique while achieving the same quality and stability achieved by record-setting spin-coated laboratory cells would be a significant step forward. If the project is successful, it will remove a major obstacle to the successful commercialization of perovskite PVs. 

Texas Engineering Experiment Station

Waveguiding Solar Concentrator

Texas Engineering Experiment Station (TEES) and their partners will build a micro-CPV system that incorporates waveguide technology. A waveguide concentrates and directs light to a specific point. TEES's system uses a grid of waveguides to concentrate sunlight onto a set of coupling elements which employ a 45 degree turning mirror to further concentrate the light and increase the efficiency of the system. Each coupling element is oriented to direct its specific beam of light towards high-efficiency, multi-junction solar cells. Further system efficiency is gained by capturing diffuse light in a secondary layer. The system also includes a secondary layer that captures diffuse sunlight, increasing its overall efficiency.

Tour Engine, Inc.

High Efficiency Split-Cycle Engine for Residential Generators

Tour Engine, in collaboration with Wisconsin Engine Research Consultants (WERC) will develop a miniature internal combustion engine (ICE) based on Tour's existing split-cycle engine technology. Traditional ICEs use the force generated by the combustion of a fuel (e.g. natural gas (NG)) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. Unlike a normal combustion engine, a split-cycle engine divides the process into a cold cylinder (intake and compression) and a hot cylinder (expansion and exhaust). This allows for independent optimization of the compression and expansion ratios, leading to increased thermal efficiency. A novel Spool Shuttle Crossover Valve (SSCV) is the key enabler for the Tour engine, as it transfers the fuel/air charge from the cold to hot cylinder.

Tulane University

Hybrid Solar Converter with Integrated Thermal Storage

Tulane University and its partners are developing a hybrid solar energy system capable of capturing, storing, and dispatching solar energy. The system will collect sunlight using a dual-axis tracker with concentrator dish that focuses sunlight onto a hybrid solar energy receiver. Ultraviolet and visible light is collected in very high efficiency solar cells with approximately half of this part of the spectrum converted to electricity. The infrared part of the spectrum passes through the cells and is captured by a thermal receiver that converts this part of the spectrum into heat with nearly 95% efficiency. The heat is captured by a fluid that is heated to a temperature between 100 - 590°C. This heat energy can be immediately for a variety of commercial and industrial applications that require thermal energy or the heat may be stored in a small-scale thermal energy storage bank that stores energy for conversion to electricity by a heat engine when needed most. Tulane University's system will enable efficient use of the full solar spectrum while storing a large component of sunlight as heat for industrial processes or conversion into electricity at any time of day.

United Technologies Research Center

Development of an Intermediate Temperature Metal Supported Proton Conducting Solid Oxide Fuel Cell Stack

United Technologies Research Center (UTRC) is developing an intermediate-temperature fuel cell for residential applications that will combine a building's heating and power systems into one unit. Existing fuel cell technologies usually focus on operating low temperatures for vehicle technologies or at high temperatures for grid-scale applications. By creating a metal-supported proton conducting fuel cell with a natural gas fuel processor, UTRC could lower the operating system temperatures to under 500 °C. The use of metal offers faster start-up times and the possibility of lower manufacturing costs and additional automation options, while the proton conducting electrolyte offers the potential for higher ionic conductivity at lower temperatures than regular oxygen conducting solid oxide electrolyte materials. An intermediate temperature electrolyte will be used to achieve a lower operating temperature, while a redesigned cell architecture will increase the efficiency and lower the cost of UTRC's overall system.

University of Arizona

A High Efficiency Flat Plate PV with Integrated Micro-CPV Atop a 1-Sun Panel

University of Arizona will develop a micro-CPV system that combines a CPV cell with dual-sided FPV panels to capture direct, diffuse, and reflected sunlight. The team's system will feature lenses that focus sunlight onto a horizontal waveguide, which further concentrates the light onto high-performance micro-CPV solar cells. Dual-sided solar panels, attached beneath the CPV cells, enable diffuse light collection on one side and reflected light collection on the other side. The system will be mounted on a two-axis tracker that will allow for optimal collection of sunlight throughout the day.

University of Arizona

A CPV/CSP Hybrid Solar Energy Conversion System with Full Use of Solar Spectrum

University of Arizona is developing a hybrid solar converter that splits the light spectrum, sending a band of the solar spectrum to solar cells to generate electricity and the rest to a thermal fluid to be stored as heat. The team's converter builds off the CSP trough concentrator design, integrating a partially transmitting mirror near the focus to reflect visible wavelengths of light onto high-efficiency solar cells while passing ultraviolet and most infrared light to heat a thermal fluid. The visible light is concentrated further before reaching the solar cells to maximize their power output. A thermal management system built into the solar cells allows them to be maintained at an optimal operating temperature and could be used to recover useful waste heat. Hot thermal fluid generated by the converter can be stored and used when needed to drive a turbine to produce electricity. The converter leverages the advantages of both PV and CSP to use each portion of the solar spectrum most effectively. This could enable utilities to provide dispatchable, on-demand, solar electricity at low cost even when the sun does not shine.

University of California, Los Angeles

Fuel Cells with Dynamic Response Capability Based on Energy Storage Electrodes with Catalytic Function

The University of California, Los Angeles (UCLA) is developing a low-cost, intermediate-temperature fuel cell that will also function like a battery to increase load-following capability. The fuel cell will use new metal-oxide electrode materials--inspired by the proton channels found in biological systems--that offer superior energy storage capacity and cycling stability, making it ideal for distributed generation systems. UCLA's new materials also have high catalytic activity, which will lower the cost of the overall system. Success of this project will enable a rapid commercialization of multi-functional fuel cells for broad applications where reliable distributed generations are needed.

University of California, Santa Cruz

Adiabatic Waveguide Coupler for High-Power Solar Energy Collection and Transmission

The University of California, Santa Cruz (UC Santa Cruz) is developing an optical device that enables the use of concentrated solar energy at locations remote to the point of collection. Conventional solar concentration systems typically use line of sight optical components to concentrate solar energy onto a surface for direct conversion of light into electricity or heat. UC Santa Cruz's innovative approach leverages unique thin-film materials, processes, and structures to build a device that will efficiently guide sunlight into an optical fiber for use away from the point of collection. UC Santa Cruz's optical device improves the coupling of high-power, concentrated solar energy systems into fiber-optic cables for use in applications such as thermal storage, photovoltaic conversion, or solar lighting.

University of Michigan

Benchtop Growth of High Quality III-V Thin Film Photovoltaics through Electrochemical Liquid Phase Epitaxy (ec-LPE)

The University of Michigan is investigating a new, hybrid thin-film PV production technology that combines two different semiconductor production techniques: electrodeposition (the deposition of a substance on an electrode by the action of electricity) and epitaxial crystal growth (the growth of crystals of one substance on the crystal face of another substance). If successful, the University of Michigan's new hybrid approach would produce highly efficient (above 20%) gallium arsenide thin film solar cells using only simple process equipment, non-flammable precursor ingredients, and relatively low production temperatures (below 350 °C). This would radically decrease the production cost per watt of solar capacity, making it substantially less expensive and more competitive with other energy sources.

University of Rochester

Planar Light Guide Concentrated Photovoltaics

The University of Rochester along with partners Arzon Solar and RPC Photonics will develop a micro-CPV system based on Planar Light Guide (PLG) solar concentrators. The PLG uses a top lenslet layer to focus and concentrate sunlight towards injection facets. These facets guide and redirect light, like a mirror, towards a PV cell at the edge of the device. Combined, these methods lead to higher efficiency over conventional FPV systems. At fewer than 3 mm thick, the system will be thin and flat, similar to traditional FPV panels. The PLG system also reduces complexity and costs by only requiring PV cells at the edge of the device, instead of an array of thousands of micro-PV cells. The team will also develop a scalable fabrication technique that uses grayscale lithography to produce the micro-optics.

University of Tulsa

Plasmonic Nanoparticle Enhanced Liquid Filters for Optimal Solar Conversion

The University of Tulsa is developing a hybrid solar converter that captures ultraviolet and infrared wavelengths of light in a thermal fluid while directing visible wavelengths of light to a photovoltaic (PV) cell to produce electricity. The PV cells can be kept at moderate temperatures while high-quality heat is captured in the thermal fluid for storage and conversion into electricity when needed. The thermal fluid will flow behind the PV cell to capture waste heat and then flow in front of the PV cell, where it heats further and also act as a filter, passing only the portions of sunlight that the PV cell converts most efficiently while absorbing the rest. This light absorption control will be accomplished by including nanoparticles of different materials, shapes, and sizes in the fluid that are tailored to absorb different portions of sunlight. The heat captured in the fluid can be stored to provide dispatchable solar energy during non-daylight hours. Together, the PV cells and thermal energy provide instantaneous as well as storable power for dispatch when most needed.

University of Wisconsin

An Integrated High Pressure SOFC and Premixed Compression Ignition Engine System

The University of Wisconsin - Madison will develop components for a hybrid distributed energy generation system that couples a pressurized solid oxide fuel cell (SOFC) with a premixed compression ignition (PCI) engine system. In the resulting system, gases that leave the fuel cell, which consumes about 75% of the fuel, are directed into the engine to be ignited by compression of the pistons. To achieve a targeted 70% electric efficiency, the SOFC system must operate near 75% fuel utilization. When operating at this high level of fuel utilization, however, the flame speed of the leftover fuel in the cell's "tailgas" is too low to be used effectively in a conventional spark-ignited engine. The team will address this challenge by using a novel, PCI engine concept that adds an extra burst of spark-ignited natural gas, improving engine efficiency. The system will be analyzed in conjunction with a next generation, intermediate temperature (600°C to 800°C), metal-supported SOFC, but the final engine system will be designed to be suitable with any pressurized, intermediate temperature SOFC. With this universal capability, the final product will be an engine system that can "plug into" any intermediate temperature SOFC system. The team's design targets larger industrial applications, aiming for systems as large as 1MW.

Washington State University

De-Coupled Solid Oxide Fuel Cell Gas Turbine Hybrid (dFC-GT)

Washington State University will develop a hybrid power system using a high-pressure, high-temperature fuel cell stack and gas turbine. The project will examine the benefits of a decoupled design, in which the fuel cell stack and gas turbine components are not directly connected within the hybrid system. The team's other primary innovation is the integration of a membrane to concentrate oxygen from air supplied by the turbine before feeding it into the fuel cell, which avoids pressurizing the entire air feed stream, improving performance and boosting efficiency. The pressurized solid oxide fuel cell (SOFC) and a micro gas turbine (mGT) are physically separated by the ceramic oxygen transport membrane (OTM), which prevents the SOFC from being exposed to damaging pressure surges from the mGT. In this way, the decoupled system allows the individual components to contribute synergistically to the high-efficiency, cost-effective hybrid power generation system. By combining the efficiency of pressurized SOFC operation using natural gas and pure oxygen fuel with a microturbine in a decoupled configuration, the team hopes to achieve 75% fuel-to-electric efficiency.

West Virginia University Research Corporation

Advanced Stirling Power Generation System for Combined Heat and Power

West Virginia University Research Corporation (WVURC) and their partner, Infinia Technology Corporation, propose to demonstrate an advanced Stirling power generation system for residential CHP applications. A Stirling engine uses a working gas housed in a sealed environment, in this case the working gas is helium. When heated by the natural gas-fueled burner, the helium expands causing a piston to move and interact with a linear alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. This project makes extensive use of additive manufacturing i.e. constructing components one layer at a time - similar to 3D printing. They propose using additive manufacturing because building the system as one piece minimizes interfacial heat losses and improves heat transfer, leading to increased efficiency.

West Virginia University Research Corporation

Oscillating Linear Engine and Alternator

West Virginia University Research Corporation (WVURC), along with its partners at ANSYS, Inc., Sustainable Engineering, Wilson Works, and Stryke Industries, will develop a CHP generator for residential use based on a two-stroke, spark-ignited free-piston internal combustion engine (ICE). Traditional internal combustion engines use the force generated by the combustion of a fuel (natural gas in this case) to move a piston, transferring chemical energy to mechanical energy, which when used in conjunction with a generator produces electricity. This free-piston design differs from traditional slider-crank ICE models by eliminating the crankshaft and using a spring to increase frequency and stabilize operation. The resulting design is compact with few moving parts and has reduced frictional losses. In place of a traditional alternator, this engine drives a permanent magnet linear electric generator.

Wisconsin Engine Research Consultants, LLC

Spark-Assisted HCCI Residential Generator

Wisconsin Engine Research Consultants (WERC) and its partners Adiabatics, Briggs and Stratton, and the University of Wisconsin-Madison will develop a generator using an internal combustion engine (ICE) that incorporates an advanced spark-assisted homogeneous charge compression ignition (SA-HCCI) system. Traditional internal combustion engines use the force generated by the combustion of a fuel (e.g. natural gas) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. SA-HCCI systems achieve combustion by compressing their fuel/air mix to the point of ignition, with a spark helping to initiate the process. These systems run very fuel lean and achieve high efficiency and waste less heat compared to conventional ICEs. In addition, the WERC team will further increase efficiency by incorporating thermal barrier coatings, an advanced boost system, and an optimized low-friction combustion chamber.

Yale University

Power Generation from Waste Heat with Closed-Loop Membrane-Based System

Yale University is developing a system to generate electricity using low-temperature waste heat from power plants, industrial facilities, and geothermal wells. Low-temperature waste heat is a vast, mostly untapped potential energy source. Yale's closed loop system begins with waste heat as an input. This waste heat will separate an input salt water stream into two output streams, one with high salt concentration and one with low salt concentration. In the next stage, the high and low concentration salt streams will be recombined. Mixing these streams releases energy which can then be captured. The mixed saltwater stream is then sent back to the waste heat source, allowing the process to begin again. Yale's system for generating electricity from low-temperature waste heat could considerably increase the efficiency of power generation systems.

Yale University

Dual-Junction Solar Cells for High-Efficiency at Elevated Temperature

Yale University is developing a dual-junction solar cell that can operate efficiently at temperatures above 400 °C, unlike today's solar cells, which lose efficiency rapidly above 100°C and are likely to fail at high temperatures over time. Yale's specialized dual-junction design will allow the cell to extract significantly more energy from the sun at high temperature than today's cells, enabling the next generation of hybrid solar converters to deliver much higher quantities of electricity and highly useful dispatchable heat. Heat rejected from the cells at high temperature can be stored and used to generate electricity with a heat engine much more effectively than cells producing heat at lower temperatures. Therefore, electricity can be produced at higher overall efficiency for use even when the sun is not shining.


Subscribe to Distributed Generation