Sorry, you need to enable JavaScript to visit this website.

Efficiency

Iowa State University

Simulation, Challenge Testing & Validation of Occupancy Recognition & CO2 Technologies

Iowa State University (ISU) will develop a comprehensive testing protocol and simulation tools to evaluate the energy savings and reliability of occupancy recognition sensor technologies for commercial and residential buildings. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of occupancy recognition of these systems. To address this need, ISU's protocols will allow them to determine occupancy recognition, sensor effectiveness, and reliability in both laboratory and real-world conditions for residential and commercial applications. Using their protocol and simulation tools, sensor technologies will be tested, including occupancy presence technologies for residential buildings, occupant counting solutions for commercial buildings, and CO2 sensing technologies for commercial buildings. For commercial buildings, the office, and academic submarkets will be the focus of these efforts, two of the highest energy-consuming building sectors. For residential buildings, a diversity of building types and interior layouts located in Ames, Iowa will be used to conduct real-world field testing. Results from the proposed work will be used to develop the framework for two nationwide test standards.

IR Dynamics, LLC

Dynamic IR Window Film to Improve Window Energy Efficiency

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team's nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior. This same material reflects thermal radiation and displays a tunable emissivity, contributing more to its insulation value and energy retention. The dynamic IR reflectivity and emissivity are passive by nature, requiring no electronics or power source to shift, and only rely on environmental temperature changes. IR Dynamics' technology creates a window film that automatically adjusts depending on outside temperatures and can have a substantive impact in performance on single-pane and older variants of double-pane windows.

ITN Energy Systems, Inc.

Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

Johns Hopkins University

Carbon Fiber from Methane

Johns Hopkins University will develop and assess components of a self-powered system to convert methane (the main component in natural gas) into carbon fiber. Methane can be separated into carbon and hydrogen, or burned for energy. The team will develop processes to use methane both to power the system and serve as carbon feedstock in a four stage system. First, methane is decomposed into hydrogen and carbon, and combined into a carbon/metal aggregate. Second, the carbon/metal aggregate is melted, producing a liquid melt containing carbon dissolved within it. Third, the melt is solidified into a homogeneous ribbon. Fourth, carbon is extracted from the ribbon in the form of fiber or fiber precursor. Finally, the metal content of the ribbon is reclaimed and recycled back to the start of the process for further methane decomposition. The project will focus on resolving the materials science challenges of directing carbon crystal growth into fiber and/or fiber precursors (steps 3 and 4). The final goal is to produce fibers that have the strength and stiffness of traditionally produced carbon fiber while requiring a fraction of energy and cost to produce.

JR2J, LLC

Laser Spike Anneal Technology for the Activation of Implanted Dopants in Gallium Nitride

Advanced doping methods are required to realize the potential of gallium nitride (GaN)-based devices for future high efficiency, high power applications. Ion implantation is a doping process used in other semiconductor materials such as Si and GaAs but has been difficult to use in GaN due to the limited ability to perform a damage recovery anneal in GaN. JR2J will develop an innovative laser spike annealing technique to activate implanted dopants in GaN. Laser spike annealing is a high-temperature (above 1300 ºC) heat treatment technique that activates the dopants in GaN and repairs damage done during the implantation process. By keeping the laser spike duration very short (0.1-100 milliseconds), the technique is hypothesized to be short enough to avoid degradation of the GaN lattice itself. There are commercially available laser spike annealing systems, typically used in Si-based processes, which should be able to be adapted to annealing GaN substrates with small modifications. If the proof of concept is achieved, this could provide a fast road to commercialization.

Kyma Technologies, Inc.

Transformational GaN Substrate Technology

Kyma Technologies will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed's structural quality and improving its purity.

Lawrence Berkeley National Laboratory

Associated Particle Imaging (API) for Non-invasive Determination of Carbon Distribution in Soil

Lawrence Berkeley National Laboratory (LBNL) will develop a field-deployable instrument that can measure the distribution of carbon in soil using neutron scattering techniques. The system will use the Associated Particle Imaging (API) technique to determine the three-dimensional carbon distribution with a spatial resolution on the order of several centimeters. A compact, portable neutron generator emits neutrons that excite carbon and other nuclei. The excited carbon isotopes emit gamma rays that can be detected above the ground with spectroscopic detectors and used as a proxy to estimate the amount of carbon in the soil. Neutron exposure at the applied rates from the instrument will not damage plants or affect their growth rates, and protocols for safe operation of the system will be developed in consultation with radiation health personnel. The advantage of API is that it can spatially map the carbon distribution in soil more accurately than other imaging methods that heavily favor the top layers of soil. The spatial resolution of API will allow the measurement of changes in carbon fraction related to depth and changes associated with plant root architecture and soil porosity. Since repeated measurements are possible over the growing season, the API system will provide a bridge to understanding soil carbon sequestration. If successful, API data will enable the optimization of soil management practices as well as the opportunity to optimize plants for specific traits, such as larger root mass, and deeper roots.

Lawrence Berkeley National Laboratory

Integrated Imaging and Modeling Toolbox for Accelerated Development of Root-focused Crops at Field Scales

Lawrence Berkeley National Laboratory (LBNL) will develop an imaging-modeling toolbox to aid in the development of more efficient crops at field scales. The approach is based on a root phenotyping method called Tomographic Electrical Rhizosphere Imaging (TERI). TERI works by applying a small electrical signal to a plant, then measuring the impedance responses through the roots and correlating those responses to root and soil properties. Key target traits of the LBNL project include root mass, root surface area, rooting depth, root distribution in soil, and soil moisture content and texture. The TERI technology will be sensitive enough to distinguish between various plant varieties. The process is minimally invasive, and by doing repeated TERI measurements over the growing season, critical root architectural traits and their dynamic changes over time can be quantified for a range of soil conditions. From laboratory studies, LBNL and its partners will integrate hardware and software tools to develop a field deployable instrument based on the TERI technology. LBNL is partnered with the Noble Foundation to apply the TERI technology to wheat breeding and identify wheat varieties with improved root characteristics, and also link visible above-ground phenotypes with the desired root characteristics. The team will utilize the TERI technology to characterize plants in both controlled laboratory and field studies, and use the data generated to improve ecological models predicting plant performance in the environment.

Lawrence Berkeley National Laboratory

 MEMS RF Accelerators For Nuclear Energy and Advanced Manufacturing

LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers. Ions will be injected and accelerated across the gaps formed in stacks of wafers, leading to high-current densities for ion accelerators. MEMS-based batch fabrication will reduce the size, weight, power and cost of ion accelerators more than tenfold, enabling low-cost, rapid testing and development of radiation-hard materials for advanced nuclear energy and new applications in manufacturing.

Lawrence Livermore National Laboratory

Magnesium Diffusion Doping of GaN

Livermore National Laboratory (LLNL) will advance GaN device processing knowledge to enable production of GaN devices with higher speed and power at a lower cost. Using a selective area p-type doping process to move the device architecture from a lateral to a vertical configuration makes the lower cost possible. LLNL has previously demonstrated solid-state diffusion of magnesium (Mg) into GaN at temperatures under 1000ºC through a Gallidation Assisted Impurity Diffusion (GAID) process. In the GAID process, an Mg source layer is deposited in contact with the GaN followed by a capping layer of a metal that reacts with GaN at moderate temperatures to form gallides. The closeness of this capping layer with the GaN allows reaction with the underlying GaN, removing gallium from the lattice where it is replaced with Mg. This results in Mg incorporation within the GaN lattice and p-type doping. LLNL will evaluate various Mg sources, capping layers, and diffusion conditions for the GAID process and determine the relationship among source type, thickness, and capping layer on the resulting p-type doping concentration.

Lawrence Livermore National Laboratory

Catalytic Improvement of Solvent Capture Systems

Lawrence Livermore National Laboratory (LLNL) is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.

Lehigh University

Electric Field Swing Adsorption for Carbon Capture Applications

Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University's approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

LI-COR Biosciences, Inc.

Ultra-Sensitive Methane Leak Detection System for the Oil and Gas Industry Exploiting a Novel Laser Spectroscopic Sensor with Revolutionary High Performance / Low Cost

LI-COR Biosciences is working with Colorado State University (CSU) and Gener8 to develop cost-effective, highly sensitive optical methane sensors that can be integrated into mobile or stationary methane monitoring systems. Their laser-based sensor utilizes optical cavity techniques, which provide long path lengths and high methane sensitivity and selectivity, but previously have been costly. The team will employ a novel sensor design developed in parallel with advanced manufacturing techniques to enable a substantial cost reduction. The sensors are expected to provide exceptional long-term stability, enabling robust, unattended field deployment and further reducing total cost-of-ownership. CSU will test representative sensor prototypes and demonstrate the sensor's application to leak detection and quantification. The team's proposed sensor could decrease the expense of today's monitoring technologies and encourage widespread adoption of methane monitoring and mitigation at natural gas wellpads.

Marquette University

Advanced Parallel Resonant 1MHz, 1MW, Three Phase AC to DC Ultra Fast EV Charger

Marquette University will develop a small, compact, lightweight, and efficient 1 MW battery charger for electric vehicles that will double the specific power and triple power density compared to the current state-of-the-art. The team aims to use MOSFET switches based on silicon carbide to ensure the device runs efficiently while handling very large amounts of power in a small package. If successful, the device could help to dramatically reduce charging times for electric vehicles to a matter of minutes - promoting faster adoption of electric vehicles with longer range, greater energy efficiency, and reduced range anxiety.

Massachusetts Institute of Technology

Advanced Technologies for Integrated Power Electronics

Massachusetts Institute of Technology (MIT) is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

Massachusetts Institute of Technology

Electrochemically Mediated Separation for Carbon Capture and Mitigation

Massachusetts Institute of Technology (MIT) and Siemens Corporation are developing a process to separate CO2 from the exhaust of coal-fired power plants by using electrical energy to chemically activate and deactivate sorbents--materials that absorb gases. The team found that certain sorbents bond to CO2 when they are activated by electrical energy and then transported through a specialized separator that deactivates the molecule and releases it for storage. This method directly uses the electricity from the power plant, which is a more efficient but more expensive form of energy than heat, though the ease and simplicity of integrating it into existing coal-fired power plants reduces the overall cost of the technology. This process could cost as low as $31 per ton of CO2 stored.

Massachusetts Institute of Technology

Multimetallic Layered Composites (MMLCS) for Rapid, Economical Advanced Reactor Deployment

The Massachusetts Institute of Technology (MIT) will lead a team including Georgia Tech, Louisiana Tech, and the Idaho National Lab in developing multimetallic layered composites (MMLCs) for advanced nuclear reactors and assessing how they will improve reactor performance. Rather than seeking complex alloys that offer exceptional mechanical properties or corrosion resistance at unacceptable cost, this team will develop materials with functionally graded layers, each with a specific function. The team will seek general design principles and engineer specific MMLC embodiments. The materials developed will be tested using irradiation experiments, coupled with predictive models for performance under irradiation. To date, the issue of material performance at low cost has proved a challenge for advanced reactor deployment. Developing a scalable method of materials manufacturing and testing for advanced nuclear reactors could facilitate their rapid deployment, thereby reducing energy-related emissions and improving energy efficiency.

Massachusetts Institute of Technology

Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal-Contaminated Water

Massachusetts Institute of Technology (MIT) is developing a water treatment system to treat contaminated water from hydraulic fracking and seawater. There is a critical need for small to medium-sized, low-powered, low-cost water treatment technologies, particularly for regions lacking centralized water and energy infrastructure. Conventional water treatment methods, such as reverse osmosis, are not effective for most produced water clean up based on the high salt levels resulting from fracking. MIT's water treatment system will remove high-levels of typical water contaminants such as salt, metals, and microorganisms. The water treatment system is based on low-powered generation enabling efficient on-demand, on-site potable water production. The process allows for a 50% water recovery rate and is cost-competitive with conventional water treatment technology. MIT's water treatment device would require less power than competing technologies and has important applications for mining, oil and gas production, and water treatment for remote locations.

Massachusetts Institute of Technology

Seamless Hybrid-integrated Interconnect NEtwork (SHINE)

The Massachusetts Institute of Technology (MIT) will develop a unified optical communication technology for use in datacenter optical interconnects. Compared to existing interconnect solutions, the proposed approach exhibits high energy efficiency and large bandwidth density, as well as a low-cost packaging design. Specifically, the team aims to develop novel photonic material, device, and heterogeneously integrated interconnection technologies that are scalable across chip-, board-, and rack-interconnect hierarchy levels. The MIT design uses an optical bridge to connect silicon semiconductors to flexible ribbons that carry light waves. The optical bridge scheme employs single-mode optical waveguides with small modal areas to minimize interconnect footprint, increase bandwidth density, and lower power consumption by using active devices with small junction area and capacitance. The architecture builds all the active photonic components (such as semiconductor lasers, modulators, and detectors) on the optical bridge platform to achieve low energy-per-bit connections. After developing the new photonic packaging technologies, and interconnection architectures, the team's final task will be to fabricate and test a prototype interconnect platform to validate the system models and demonstrate high bandwidth, low power, low bit-error-rate data transmission using the platform.

Material Methods, LLC

Phononic Heat Pump

Material Methods is developing a heat pump technology that substitutes the use of sound waves and an environmentally benign refrigerant for synthetic refrigerants found in conventional heat pumps. Called a thermoacoustic heat pump, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the heat pump is able to isolate the hot and cold regions of the sound waves. This technology is environmentally safe, and the simplicity of the mechanical system creates efficiencies that make the system cost competitive with traditional refrigerant-based systems.

Pages

Subscribe to Efficiency