Sorry, you need to enable JavaScript to visit this website.

Efficiency

Massachusetts Institute of Technology

Seamless Hybrid-integrated Interconnect NEtwork (SHINE)

The Massachusetts Institute of Technology (MIT) will develop a unified optical communication technology for use in datacenter optical interconnects. Compared to existing interconnect solutions, the proposed approach exhibits high energy efficiency and large bandwidth density, as well as a low-cost packaging design. Specifically, the team aims to develop novel photonic material, device, and heterogeneously integrated interconnection technologies that are scalable across chip-, board-, and rack-interconnect hierarchy levels. The MIT design uses an optical bridge to connect silicon semiconductors to flexible ribbons that carry light waves. The optical bridge scheme employs single-mode optical waveguides with small modal areas to minimize interconnect footprint, increase bandwidth density, and lower power consumption by using active devices with small junction area and capacitance. The architecture builds all the active photonic components (such as semiconductor lasers, modulators, and detectors) on the optical bridge platform to achieve low energy-per-bit connections. After developing the new photonic packaging technologies, and interconnection architectures, the team's final task will be to fabricate and test a prototype interconnect platform to validate the system models and demonstrate high bandwidth, low power, low bit-error-rate data transmission using the platform.

Material Methods, LLC

Phononic Heat Pump

Material Methods is developing a heat pump technology that substitutes the use of sound waves and an environmentally benign refrigerant for synthetic refrigerants found in conventional heat pumps. Called a thermoacoustic heat pump, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the heat pump is able to isolate the hot and cold regions of the sound waves. This technology is environmentally safe, and the simplicity of the mechanical system creates efficiencies that make the system cost competitive with traditional refrigerant-based systems.

Materials & Electrochemical Research (MER) Corporation

Advanced Electrolytic Titanium Powder Production from Titanium Oxycarbide

Materials & Electrochemical Research (MER) is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. MER is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency. MER will test different cell designs, reduce unwanted side reactions to increase energy efficiency, and minimize the heat loss that occurs when processing titanium. By developing a scalable and stable electrochemical cell, MER could significantly reduce the costs and energy consumption associated with producing titanium.

Matrix Sensors, Inc

Stable, Low Cost, Low Power, CO2 Sensor for Demand-controlled Ventilation

Matrix Sensors and its partners will develop a low-cost CO2 sensor module that can be used to enable better control of ventilation in commercial buildings. Matrix Sensor's module uses a solid-state architecture that leverages scalable semiconductor manufacturing processes. Key to this architecture is a suitable sensor material that can selectively adsorb CO2, release the molecule when the concentration decreases, and complete this process quickly to enable real-time sensing. The team's design will use a new class of porous materials known as metal-organic frameworks (MOFs). MOFs possess high gas uptake properties, molecule selectivity and high stability. As the MOF adsorbs and desorbs CO2, a connected transducer detects the change in mass. Beyond developing the MOF, key goals for the team include developing capable transducers for the MOF gas sensor, as well as the development of wireless sensor module which will be self-contained including the sensor element, micro-processor, battery, and wireless interface. The sensor will be wall-mounted and easily installed since it will not require wired power. If successful, the project will result in a CO2 sensor system with a total cost of ownership that is 5 to 10x lower than today's systems.

Maxion Technologies, Inc.

Tunable Laser for Methane Sensing

Maxion Technologies is partnering with Thorlabs Quantum Electronics (TQE), Praevium Research, and Rice University to develop a low cost, tunable, mid-infrared (mid-IR) laser source to be used in systems for detecting and measuring methane emissions. The new architecture is planned to reduce the cost of lasers capable of targeting methane optical absorption lines near 3.3 microns, enabling the development of affordable, high sensitivity sensors. The team will combine Praevium and TQE's state-of-the-art Micro-Electro-Mechanical-System tunable Vertical Cavity Surface Emitting Laser (MEMS-VCSEL) technology with an Interband Cascade Laser (ICL) active core developed by Maxion. The unique design offers advantages in manufacturing that are expected to yield a factor-of-40 reduction in the cost of the laser source, and the wide tunability will allow the same laser design to be shared across multiple applications. When integrated with a full methane detection system, this technology could enable significant reduction in the cost associated with identifying, quantifying, and locating methane leaks as compared to currently available technologies.

Michigan State University

Diamond Diode and Transistor Devices

Michigan State University (MSU) will develop high-voltage diamond semiconductor devices for use in high-power electronics. Diamond is an excellent conductor of electricity when boron or phosphorus is added--or doped--into its crystal structures. It can also withstand much higher temperatures with higher performance levels than silicon, which is used in the majority of today's semiconductors. However, current techniques for growing doped diamond and depositing it on electronic devices are difficult and expensive. MSU is overcoming these challenges by using an innovative, low-cost, lattice-etching method on doped diamond surfaces, which will facilitate improved conductivity in diamond semiconductor devices.

MicroLink Devices

High-Power Vertical-Junction Field-Effect Transistors Fabricated on Low-Dislocation-Density GaN by Epitaxial Lift-Off

MicroLink Devices will engineer affordable, high-performance transistors for power conversion. Currently, high-performance power transistors are prohibitively expensive because they are grown on expensive gallium nitride (GaN) semiconductor wafers. In conventional manufacturing processes, this expensive wafer is permanently attached to the transistor, so the wafer can only be used once. MicroLink Devices will develop an innovative method to remove the transistor structure from the wafer without damaging any components, enabling wafer reuse and significantly reducing costs.

Monolith Semiconductor, Inc.

Advanced Manufacturing and Performance Enhancements for Reduced Cost Silicon Carbide MOSFETS

Monolith Semiconductor will utilize advanced device designs and existing low-cost, high-volume manufacturing processes to create high-performance silicon carbide (SiC) devices for power conversion. SiC devices provide much better performance and efficiency than their silicon counterparts, which are used in the majority of today's semiconductors. However, SiC devices cost significantly more. Monolith will develop a high-volume SiC production process that utilizes existing silicon manufacturing facilities to help drive down the cost of SiC devices.

N5 Sensors, Inc

Digital System-on-chip CO2 Sensor

N5 Sensors and its partners will develop and test a novel semiconductor-based CO2 sensor technology that can be placed on a single microchip. CO2 concentration data can help enable the use of variable speed ventilation fans in commercial buildings. CO2 sensing may also improve the comfort and productivity of people in commercial buildings, including academic spaces. N5 Sensor's solution will determine CO2 concentrations through absorption of CO2 when the concentrations are high in the environment, and desorption of CO2 when the concentrations are low. The team's project combines innovations in a number of areas: ultra-low power sensing architecture, semiconductor microfabrication, effective gas separation membranes, novel signal processing, and machine learning. If successful, the project can result in a 10x reduction in the price of CO2 sensors and the innovation will ultimately result in a low-cost, highly autonomous systems with "peel, stick and press button" type of installation and operation.

Nalco Company

Energy Efficient Capture of CO2 from Coal Flue Gas

Nalco is developing a process to capture carbon in the smokestacks of coal-fired power plants. Conventional CO2 capture methods require the use of a vacuum or heat, which are energy-intensive and expensive processes. Nalco's approach to carbon capture involves controlling the acidity of the capture mixture and using an enzyme to speed up the rate of carbon capture from the exhaust gas. Changing the acidity drives the removal of CO2 from the gas without changing temperature or pressure, and the enzyme speeds up the capture rate of CO2. In addition, Nalco's technology would be simpler to retrofit to existing coal-fired plants than current technologies, so it could be more easily deployed.

NanOasis Technologies, Inc.

Carbon Nanotube Membrane Elements for Energy Efficient and Low Cost Reverse Osmosis

NanOasis Technologies is developing better membranes to filter salt from water during the reverse osmosis desalination process. Conventional reverse osmosis desalination processes pump water through a thin film membrane to separate out the salt. However, these membranes only provide modest water permeability, making the process highly energy intensive and expensive. NanOasis is developing membranes that consist of a thin, dense film with carbon nanotube pores that significantly enhance water transport, while effectively excluding the salt. Water can flow through the tiny pores of these carbon nanotubes quickly and with less pressure, drastically reducing the overall energy use and cost of the desalination process. In addition, NanOasis' technology was purported to not require any modifications to existing desalination plants, so it could be easily deployed.

NanoSD, Inc.

Retrofittable and Transparent Super-Insulator for Single-Pane Windows

NanoSD, with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble structure will exhibit excellent thermal barrier properties. The film can be transparent because the nanostructures are too small to be seen, but achieving this transparency needs processing innovations for assembling the film. The film should also be lightweight, flexible, fire/chemical resistant, soundproof, and condensation resistant. The nanobubble film will be integrated with a low emissivity layer to achieve the final insulating performance. The team will use cost-effective processing and assembly technologies to manufacture its window coating at a cost less than $5 per square foot.

National Renewable Energy Laboratory

Negating Energy Losses in Organic Photovoltaics Using Photonic Structures

The National Renewable Energy Laboratory (NREL) and the University of Colorado (CU) are developing a way to enhance plastic solar cells to capture a larger part of the solar spectrum. Conventional plastic solar cells can be inexpensive to fabricate but do not efficiently convert light into electricity. NREL is designing novel device architecture for plastic solar cells that would enhance the utilization of parts of the solar spectrum for a wide array of plastic solar cell types. To develop these plastic solar cells, NREL and CU will leverage computational modeling and advanced facilities specializing in processing plastic PVs. NREL's plastic solar cell devices have the potential to exceed the power conversion efficiencies of traditional plastic solar cells by up to threefold.

Northeastern University

Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

Northeastern University is developing bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today's best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

Northeastern University

Rapid Assessment of AlT2X2 (T = Fe, Co, Ni, X=B, C) Layered Materials for Sustainable Magnetocaloric Applications

Northeastern University, in partnership with the Ames Laboratory, will evaluate a range of new magnetocaloric compounds (AlT2X2) for potential application in room-temperature magnetic cooling. Magnetic refrigeration is an environmentally friendly alternative to conventional vapor-compression cooling technology. The magnetocaloric effect is triggered by application and removal of an applied magnetic field--adjusting the magnetic field translates into an adjustment in the temperature of the material. The benchmark magnetocaloric materials are based on the rare earth metal gadolinium (Gd), but gadolinium is scarce in the earth's crust and prohibitively expensive. Other magnetocaloric materials have similar rarity and cost constraints, or are brittle and undergo large volume changes during magnetic transition. Volume changes are problematic because a magnetocaloric working material must maintain mechanical and magnetic integrity over 300 million cycles in a ten-year lifetime. The Northeastern-led team is proposing to explore new magnetocaloric materials, AlT2X2 (where T=Fe, Mn, and/or Co, and X = B and/or C) comprised of abundant, non-toxic elements that can undergo a structural transition near room temperature. The material is projected to meet or exceed the performance of other candidate magnetocaloric materials due to its potential ease of fabrication, corrosion resistance, high mechanical integrity maintained through caloric phase change, and low heat capacity that fosters effective heat transfer. The project objectives are to ascertain the most promising compositions and magnetic field and temperature combinations to realize the optimal magnetocaloric response in this compound.

Northeastern University

A Universal Converter for DC, Single-phase AC, and Multi-phase AC Systems

Northeastern University will develop a new class of universal power converters that use the fast switching and high breakdown voltage properties of silicon carbide (SiC) switches to significantly reduce system weight, volume, cost, power loss, and failure rates. Northeastern's proposed 10 kW SiC based high-frequency converter topology minimizes the size of passive components that are used for power transfer, and replaces electrolytic capacitors with short lifetimes with film capacitors. The proposed universal converter can be used for transferring power from any type of source to any type of load. It can be used when the instantaneous values of input and output power do not match even without having large passive components, or increasing the number of passive components. If successful, the proposed converter and innovative control strategy has the potential to create a new paradigm in power electronics that could influence numerous applications, such as electric vehicles, wind energy systems, photovoltaic systems, industrial motor drives, residential variable frequency drive systems, and nanogrid applications.

Oak Ridge National Laboratory

High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

The team from Oak Ridge National Laboratory (ORNL) and Georgia Institute of Technology is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids--salts that exist in liquid form--are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL's sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

Oak Ridge National Laboratory

Low Cost, Multilayer, Highly Transparent and Thermally Insulating Hybrid Silica-Polymer Film

Oak Ridge National Laboratory (ORNL) and its partners are creating a highly transparent, multilayer window film that can be applied onto single-pane windows to improve thermal insulation, soundproofing, and condensation resistance. The ORNL film combines four layers. Low-cost, nanoporous silica will be used to improve thermal insulation. A layer of a sound-absorbing polymer, which is commonly applied to windows for soundproofing, will be added between the silica sheets to reduce outside noise infiltration. A final outside superhydrophobic coating layer will minimize the condensation. A low-emissivity film will be added to minimize heat transfer out from the conditioned interior.

Oak Ridge National Laboratory

New High Temperature, Corrosion-Resistant Cast Alloy For Operation in Industrial Gaseous Environments

The team led by Oak Ridge National Laboratory (ORNL) will develop new cast alumina-forming austenitic alloys (AFAs), along with associated casting and welding processes for component fabrication. ORNL and its partners will prototype industrial components with at least twice the oxidation resistance compared to current cast chromia-forming steel and test it in an industrial environment. These innovations could allow various industrial and chemical processing systems and gas turbines to operate at higher temperatures to improve efficiencies and reduce downtimes, thus providing cost and energy reductions for a wide range of energy-intensive applications.

Ohio State University

Pilot Scale Testing of Carbon-Negative, Product-Flexible Syngas Chemical Looping

The Ohio State University has developed an iron-based material and process for converting syngas--a synthetic gas mixture--into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State's technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

Pages

Subscribe to Efficiency