Sorry, you need to enable JavaScript to visit this website.

Efficiency

IBM T. J. Watson Research Center

An Intelligent Multi-modal CH4 Measurement System (AIMS)

IBM's T.J Watson Research Center is working in conjunction with Harvard University and Princeton University to develop an energy-efficient, self-organizing mesh network to gather data over a distributed methane measurement system. Data will be passed to a cloud-based analytics system using custom models to quantify the amount and rate of methane leakage. Additionally, IBM is developing new, low-cost optical sensors that will use tunable diode laser absorption spectroscopy (TDLAS) for methane detection. While today's optical sensors offer excellent sensitivity and selectivity, their high cost and power requirements prevent widespread adoption. To overcome these hurdles, IBM and its partners plan to produce a miniaturized, integrated, on-chip version that is less expensive and consumes less power. At a planned cost of about $300 per sensor, IBM's sensors will be 10 to 100 times cheaper than TDLAS sensors on the market today. By advancing an affordable methane detection system that can be customized, IBM's technology could enable producers to more efficiently locate and repair methane leaks, and therefore reduce overall methane emissions.

IBM T. J. Watson Research Center

Multi-Wavelength Optical Transceivers Integrated on Node 

IBM T.J. Watson Research Center will develop a two-pronged approach to improve future datacenter efficiency.. New optical interconnect solutions can provide a path to energy-efficient datacenters at higher bandwidth levels, but they must also meet key metrics including power density, cost, latency, reliability, and signal integrity. IBM's team will use their expertise with vertical-cavity surface-emitting lasers (VCSELs) to develop VCSEL-based optical interconnect technology capable of meeting the necessary future demands. VCSEL-based interconnects offer an appealing combination of low power consumption, small size, high performance, low cost, and manufacturability. The team will work to increase the operating speed of VCSELs, detectors, and the associated circuits, while also developing packaging solutions to install optical interconnects on the integrated circuit. This integration will allow the system to eliminate the traditional driver and receiver electronics of most board-mounted optical modules, greatly reducing the cost and energy use of data transfer. The team will eventually use single-ended signaling to drive and receive signals from the modules directly, increasing the bandwidth of the system chips by at least two times and improving power efficiencies across the datacenter.

IBM T. J. Watson Research Center

Optical Network using Rapid Amplified Multi-wavelength Photonic Switches (ONRAMPS)

The IBM T.J. Watson Research Center will develop datacenter networking technology incorporating extremely fast switching devices that operate on the nanosecond scale. At the heart of the process is the development of a new type of photonic switch. The dominant switching technology today are electronic switches that toggle connections between two wires, each wire providing a different communication channel. A photonic switch toggles connections between two optical fibers, where each individual fiber themselves can carry many communication channels allowing immense numbers of data transfers. Previously, photonic (or optical) switches exhibited slow switching speeds and were difficult to manufacture in high volumes, which limited their usage. IBM's photonic switches can switch quickly, similar to electronic switches, and can be fabricated using the same tools and procedures used to manufacture today's most complex microprocessors. Because each optical port carries significantly more data than their electronic counterparts, fewer ports are needed to route the same amount of data. The technology also saves time and energy because employing direct optical switching can reduce the number of times the signal needs to be converted back and forth from the electrical to optical domain and vice versa. Datacenter efficiency (including computing, memory, and communication) can be significantly improved by using photonic switches to develop new networks capable of exploiting these improvements.

Ideal Power, Inc.

Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

PV inverters convert DC power generated by modules into usable AC power. Ideal Power's initial 30kW 94lb PV inverter reduces the weight of comparable 30kW PV inverters by 90%--reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in Ideal Power's next-generation PV inverter. With these components, Ideal Power will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC's $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

Imagen Energy LLC

1200 V SiC Based Extremely Compact, 500 kW, 2000 Hz Inverter for High Speed Permanent Magnet Synchronous Machine (PMSM) Applications

Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen's design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF). Their solution hopes to maximize the capabilities of the SiC technology and associated digital control platform, thereby bringing the overall drive system performance parameters to levels unachievable by current Si-based power conversion systems. If successful, the project team will demonstrate a motor drive capable of handling large BEMF and increase motor system efficiency over a broad range of operating speeds, a useful combination for high-speed applications in the oil and gas industry, high-speed/high-power compressors, grid-connected energy storage, and renewable energy generation.

iMetalx Group, LLC

Advanced Titanium Electrowinning Using Alternative Ores

iMetalx is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. iMetalx is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency. iMetalx will test different cell designs, reduce unwanted side reactions to increase energy efficiency, and minimize the heat loss that occurs when processing titanium. By developing a scalable and stable electrochemical cell, iMetalx could significantly reduce the costs and energy consumption associated with producing titanium.

Infineon Technologies Americas Corp.

Low Cost e-mode GaN HEMT Gate Driver IC Enables Revolutional Energy Savings in Variable Speed Drives for Appliance Motors

Infineon Technologies will develop a new, low-cost integrated circuit (IC) gate driver specifically for use with gallium nitride (GaN) high electron mobility transistor (HEMT) switches. The GaN HEMT switches would be used as a component for controlling variable speed electric motors in variable speed drives (VSDs). Electric motors, which account for about 40% of U.S. electricity consumption, can be made substantially more efficient by replacing constant speed motors with variable speed motors. Most VSDs today use silicon-based semiconductors, which are limited in performance compared to those based on wide-bandgap semiconductors like GaN. Infineon plans to integrate a cost-effective gate driver IC together with GaN HEMT switches and simple packaging to enable a cost reduction by a factor of two or three, simplified integration, and significant energy savings. If successful, the technology may drive rapid adoption of variable speed control in residential and light commercial 50-200W appliance motors from fans and pumps to refrigeration and air conditioning compressors.

INFINIUM, Inc.

Clean Efficient Aluminum Oxide Electrolysis with SOM Inert Anodes

INFINIUM is developing a technology to produce light metals such as aluminum and titanium using an electrochemical cell design that could reduce energy consumption associated with these processes by over 50%. The key component of this innovation lies within the anode assembly used to electrochemically refine these light metals from their ores. While traditional processes use costly graphite anodes that are reacted to produce CO2 during refining, INFINIUM's anode can use much cheaper fuels such as natural gas, and produce a high-purity oxygen by-product. Revenue from this by-product could significantly affect aluminum production economics. Traditional cell designs also waste a great deal of heat due to the necessity of keeping the reactor open to the air while contaminated CO2 rapidly exits the chamber. Since INFINIUM's anode keeps the oxygen or CO2 anode gas away from the main reactor chamber, the entire system may be far more effectively insulated.

INFINIUM, Inc.

Ultra-Low Energy Magnesium Recycling for New Light-Weight Vehicles

INFINIUM will convert low-grade magnesium scrap into material of sufficient purity for motor vehicle components by a novel high-efficiency process using less than 1 kWh/kg magnesium product. Other magnesium purification technologies such as distillation and electrorefining use 5-10 kWh/kg, and primary production uses 40-100 kWh/kg. This is also a high-speed continuous process, with much lower labor and capital costs than other batch purification technologies. This technology could enable cost-effective recycling of magnesium, converting low-grade scrap metal into high-purity magnesium at low cost and significantly lower energy consumption, and could also enable new classes of primary production technology.

Iowa State University

High-throughput, High-resolution Phenotyping of Nitrogen Use Efficiency Using Coupled In-plant and In-soil Sensors

Iowa State University (ISU) will develop new sensors that measure the amount of nitrogen in soils and plants multiple times per day throughout the growing season. Nitrogen fertilizer is the largest energy input to U.S. corn production. However, its use is inefficient due to a lack of low-cost, effective nitrogen sensors. Year-to-year variation in nitrogen mineralization, due to differences in soil water and temperature, creates tremendous uncertainty about the proper fertilizer input and can cause farmers to over-apply. As a result, nitrogen fertilizer is lost from croplands to the surrounding environment where it pollutes air and water resources. To address this problem, the team will develop a novel silicon microneedle in-plant nitrogen sensor and a microfluidic soil nitrogen sensor. The microscale needles can be inserted into multiple sites of the plant to provide frequent and accurate monitoring of nitrate uptake, and for the first time provide a view of plant nitrogen use as the plant and roots develop. The team will also develop an automated microfluidic sensor which will measure the amount of nitrate in soil by extracting very small amounts of solution from the soil. The microfludic technology on which soil sensors are based can be produced at low cost. The combination of these two sensors will allow for a deeper understanding of plant nitrogen use and how it correlates with nitrate levels in the soil. These new sensors will accelerate the effort to identify, select, and breed new crops with improved nitrogen use efficiency. And the project will help increase the energy efficiency of our agriculture systems while reducing input costs, greenhouse gas emissions, and nitrate pollution of aquatic ecosystems.

Iowa State University

Simulation, Challenge Testing & Validation of Occupancy Recognition & CO2 Technologies

Iowa State University (ISU) will develop a comprehensive testing protocol and simulation tools to evaluate the energy savings and reliability of occupancy recognition sensor technologies for commercial and residential buildings. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of occupancy recognition of these systems. To address this need, ISU's protocols will allow them to determine occupancy recognition, sensor effectiveness, and reliability in both laboratory and real-world conditions for residential and commercial applications. Using their protocol and simulation tools, sensor technologies will be tested, including occupancy presence technologies for residential buildings, occupant counting solutions for commercial buildings, and CO2 sensing technologies for commercial buildings. For commercial buildings, the office, and academic submarkets will be the focus of these efforts, two of the highest energy-consuming building sectors. For residential buildings, a diversity of building types and interior layouts located in Ames, Iowa will be used to conduct real-world field testing. Results from the proposed work will be used to develop the framework for two nationwide test standards.

IR Dynamics, LLC

Dynamic IR Window Film to Improve Window Energy Efficiency

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team's nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior. This same material reflects thermal radiation and displays a tunable emissivity, contributing more to its insulation value and energy retention. The dynamic IR reflectivity and emissivity are passive by nature, requiring no electronics or power source to shift, and only rely on environmental temperature changes. IR Dynamics' technology creates a window film that automatically adjusts depending on outside temperatures and can have a substantive impact in performance on single-pane and older variants of double-pane windows.

ITN Energy Systems, Inc.

Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

Johns Hopkins University

Carbon Fiber from Methane

Johns Hopkins University will develop and assess components of a self-powered system to convert methane (the main component in natural gas) into carbon fiber. Methane can be separated into carbon and hydrogen, or burned for energy. The team will develop processes to use methane both to power the system and serve as carbon feedstock in a four stage system. First, methane is decomposed into hydrogen and carbon, and combined into a carbon/metal aggregate. Second, the carbon/metal aggregate is melted, producing a liquid melt containing carbon dissolved within it. Third, the melt is solidified into a homogeneous ribbon. Fourth, carbon is extracted from the ribbon in the form of fiber or fiber precursor. Finally, the metal content of the ribbon is reclaimed and recycled back to the start of the process for further methane decomposition. The project will focus on resolving the materials science challenges of directing carbon crystal growth into fiber and/or fiber precursors (steps 3 and 4). The final goal is to produce fibers that have the strength and stiffness of traditionally produced carbon fiber while requiring a fraction of energy and cost to produce.

JR2J, LLC

Laser Spike Anneal Technology for the Activation of Implanted Dopants in Gallium Nitride

Advanced doping methods are required to realize the potential of gallium nitride (GaN)-based devices for future high efficiency, high power applications. Ion implantation is a doping process used in other semiconductor materials such as Si and GaAs but has been difficult to use in GaN due to the limited ability to perform a damage recovery anneal in GaN. JR2J will develop an innovative laser spike annealing technique to activate implanted dopants in GaN. Laser spike annealing is a high-temperature (above 1300 ºC) heat treatment technique that activates the dopants in GaN and repairs damage done during the implantation process. By keeping the laser spike duration very short (0.1-100 milliseconds), the technique is hypothesized to be short enough to avoid degradation of the GaN lattice itself. There are commercially available laser spike annealing systems, typically used in Si-based processes, which should be able to be adapted to annealing GaN substrates with small modifications. If the proof of concept is achieved, this could provide a fast road to commercialization.

Kyma Technologies, Inc.

Transformational GaN Substrate Technology

Kyma Technologies will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed's structural quality and improving its purity.

Lawrence Berkeley National Laboratory

Associated Particle Imaging (API) for Non-invasive Determination of Carbon Distribution in Soil

Lawrence Berkeley National Laboratory (LBNL) will develop a field-deployable instrument that can measure the distribution of carbon in soil using neutron scattering techniques. The system will use the Associated Particle Imaging (API) technique to determine the three-dimensional carbon distribution with a spatial resolution on the order of several centimeters. A compact, portable neutron generator emits neutrons that excite carbon and other nuclei. The excited carbon isotopes emit gamma rays that can be detected above the ground with spectroscopic detectors and used as a proxy to estimate the amount of carbon in the soil. Neutron exposure at the applied rates from the instrument will not damage plants or affect their growth rates, and protocols for safe operation of the system will be developed in consultation with radiation health personnel. The advantage of API is that it can spatially map the carbon distribution in soil more accurately than other imaging methods that heavily favor the top layers of soil. The spatial resolution of API will allow the measurement of changes in carbon fraction related to depth and changes associated with plant root architecture and soil porosity. Since repeated measurements are possible over the growing season, the API system will provide a bridge to understanding soil carbon sequestration. If successful, API data will enable the optimization of soil management practices as well as the opportunity to optimize plants for specific traits, such as larger root mass, and deeper roots.

Lawrence Berkeley National Laboratory

Integrated Imaging and Modeling Toolbox for Accelerated Development of Root-focused Crops at Field Scales

Lawrence Berkeley National Laboratory (LBNL) will develop an imaging-modeling toolbox to aid in the development of more efficient crops at field scales. The approach is based on a root phenotyping method called Tomographic Electrical Rhizosphere Imaging (TERI). TERI works by applying a small electrical signal to a plant, then measuring the impedance responses through the roots and correlating those responses to root and soil properties. Key target traits of the LBNL project include root mass, root surface area, rooting depth, root distribution in soil, and soil moisture content and texture. The TERI technology will be sensitive enough to distinguish between various plant varieties. The process is minimally invasive, and by doing repeated TERI measurements over the growing season, critical root architectural traits and their dynamic changes over time can be quantified for a range of soil conditions. From laboratory studies, LBNL and its partners will integrate hardware and software tools to develop a field deployable instrument based on the TERI technology. LBNL is partnered with the Noble Foundation to apply the TERI technology to wheat breeding and identify wheat varieties with improved root characteristics, and also link visible above-ground phenotypes with the desired root characteristics. The team will utilize the TERI technology to characterize plants in both controlled laboratory and field studies, and use the data generated to improve ecological models predicting plant performance in the environment.

Lawrence Berkeley National Laboratory

 MEMS RF Accelerators For Nuclear Energy and Advanced Manufacturing

LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers. Ions will be injected and accelerated across the gaps formed in stacks of wafers, leading to high-current densities for ion accelerators. MEMS-based batch fabrication will reduce the size, weight, power and cost of ion accelerators more than tenfold, enabling low-cost, rapid testing and development of radiation-hard materials for advanced nuclear energy and new applications in manufacturing.

Lawrence Livermore National Laboratory

Magnesium Diffusion Doping of GaN

Pages

Subscribe to Efficiency