Sorry, you need to enable JavaScript to visit this website.

Efficiency

TDA Research, Inc.

Novel Desiccant Cycle for Flue Gas Water Recovery and Cool Storage

TDA Research will develop a water recovery system that extracts and condenses 64% of the water vapor produced by the gas turbine in a natural gas combined cycle's (NGCC) power plant and stores this water for use in evaporative cooling. The system will provide supplemental cooling to NGCC power plants in which the combustion process - burning the natural gas to produce heat - produces a significant quantity of water vapor that is typically discharged to the atmosphere. First, a direct-contact condensation cycle will recover 27% of water vapor from the flue gas. To increase the amount of water recovered, a desiccant, which is a substance that attracts water, will be used to absorb an additional 37% of the water vapor. TDA's desiccant cycle utilizes the waste heat in the exhaust to regenerate the desiccant for reuse. This water recovery cycle would occur during cooler months when the water from combustion is easier to capture. Much of the water collected during this period will then be stored in an adjacent lake and saved for use during hotter summer months when evaporative cooling offers the maximum benefit to improve power plant efficiency. The project team estimates that its technology can reduce the performance penalty of a dry-cooling system by 30% compared to wet cooling. Moreover, the team is designing the system to use low-cost materials, which reduces capital costs.

Teledyne Scientific & Imaging, LLC

Integrated Power Chip Converter for Solid-State Lighting

Teledyne Scientific & Imaging is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.

Texas A&M University

SLEEPIR - Synchronized Low-energy Electronically-chopped PIR Sensor for Occupancy Detection

Texas A&M University will develop an advanced, low-cost occupancy detection solution for residential homes. Their system, called SLEEPIR, is based on pyroelectric infrared sensors (PIR) a popular choice for occupancy detection and activity tracking due to their low cost, low energy consumption, large detection range, and wide field of view. However, traditional PIR sensors can only detect individuals in motion. The team proposes a next-generation PIR sensor that is able to detect non-moving heat sources and provide quantitative information on movement. Their innovation relies on the use of an "optical chopper" which temporarily interrupts the flow of heat to the sensor and allows the device to detect both stationary and moving individuals. The team will evaluate several approaches for the chopper, such as new low-power liquid crystal technology with no moving parts. They will apply new signal processing techniques and machine learning to the infrared data, enabling differentiation between pets and people and potentially sleep vs. active states. A central hub accepts wireless data from the sensors and overrides the home thermostat as needed to adjust temperatures and provide up to 30% energy savings to the home.

Texas A&M University

A Field-Deployable Magnetic Resonance Imaging Rhizotron for Modeling and Enhancing Root Growth and Biogeochemical Function

Texas A&M AgriLife Research will develop low field magnetic resonance imaging (LF-MRI) instrumentation that can image intact soil-root systems. The system will measure root biomass, architecture, 3D mass distribution, and growth rate, and could be used for selection of ideal plant characteristics based on these root metrics. It will also have the ability to three-dimensionally image soil water content, a key property that drives root growth and exploration. Operating much like a MRI used in a medical setting, the system can function in the field without damaging plants, unlike traditional methods such as trenching, soil coring, and root excavation. The team will test two different approaches: an in-ground system shaped like a cylinder that can be inserted into the soil to surround the roots; and a coil device that can be deployed on the soil surface around the plant stem. If successful, these systems can help scientists better understand the root-water-soil interactions that drive processes such as nutrient uptake by crops, water use, and carbon management. This new information is crucial for the development of plants optimized for carbon sequestration without sacrificing economic yield. The project also aims to help develop ideal energy sorghum possessing high root growth rates, roots with more vertical angles, and roots that are more drought resistant and proliferate under water limiting conditions.

Texas A&M University

Stimuli-Responsive Metal Organic Frameworks for Energy-Efficient Post Combustion Capture

A team led by three professors at Texas A&M University is developing a subset of metal organic frameworks that respond to stimuli such as small changes in temperature to trap CO2 and then release it for storage. These frameworks are a promising class of materials for carbon capture applications because their structure and chemistry can be controlled with great precision. Because the changes in temperature required to trap and release CO2 in Texas A&M's frameworks are much smaller than in other carbon capture approaches, the amount of energy or stimulus that has to be diverted from coal-fired power plants to accomplish this is greatly reduced. The team is working to alter the materials so they bind only with CO2, and are stable enough to withstand the high temperatures found in the chimneys of coal-fired power plants.

Texas Engineering Experiment Station

Generating Electricity from Waste Heat Using Metal Hydrides

Texas Engineering Experiment Station (TEES) is developing a system to generate electricity from low-temperature waste heat streams. Conventional waste heat recovery technology is proficient at harnessing energy from waste heat streams that are at a much higher temperature than ambient air. However, existing technology has not been developed to address lower temperature differences. The proposed system cycles between heating and cooling a metal hydride to produce a flow of pressurized hydrogen. This hydrogen flow is then used to generate electricity via a turbine generator. TEES's system has the potential to be more efficient than conventional waste heat recovery technologies based on its ability to harness smaller temperature differences than are necessary for conventional waste heat recovery.

The Boeing Company

A Case Study on the Impact of Additive Manufacturing for Heat/Mass Transfer Equipment used for Power Production

The Boeing Company is developing a next-generation air-cooled heat exchanger by leveraging technological advances in additive manufacturing (AM). The work builds on a previous ARPA-E IDEAS award to the University of Maryland that included the fabrication of geometrically complex heat exchanger coupons. Boeing subsequently demonstrated AM fabrication of thin-walled structures with a thickness of 125 to 150 microns, which represents a 50% reduction relative to then-state-of-the-art AM processes. The high temperature heat exchanger currently under development employs complex internal geometries to achieve an expected 20-30% improvement in thermal performance and up to 20% reduction in weight. Current manufacturing techniques include manual stacking of heat exchangers, brazing in a thermal vacuum chamber, and welding of external features. Each of these manufacturing steps is time consuming, expensive, and may damage the part. A validated AM process for heat exchangers could lead to fabrication cost savings well in excess of 25% by eliminating these steps. If successful, these high performance, lightweight heat exchangers would enable more energy-efficient aircraft. AM can also expand the design space for heat exchangers, enabling advanced designs that conform to challenging form factor requirements. Advances in efficient air-side cooling could also have significant spillover benefits in additional industries such as power plant and distributed energy systems, automotive, air-conditioning and refrigeration, power electronics, and chemical processing.

The Mackinac Technology Company

Retrofit System for Single Pane Glazing

The Mackinac Technology Company will develop an innovative, cost effective, retrofit window insulation system that will significantly reduce heat losses. The insulation system will use a durable window film that is highly transparent to visible light (more than 90% of light can pass through), but reflects thermal radiation back into the room and reduces heat loss in winter. The film will be microporous and breathable to allow air pressures to balance across the window system. The film will be bonded to a rigid frame that can be retrofitted to an existing single-pane glass window. Mackinac's pane assembly will maintain a wrinkle-free appearance over an anticipated 20-year product lifecycle. The system will be fire resistant and lightweight (less than two pounds per square foot of window pane), which will help reduce stress on existing window panes.

Tibbar Technologies

Plasma-Based Electrical Transformers 

Tibbar Technologies will develop plasma-based AC to DC converters for a variety of applications, including DC power for commercial buildings and for High Voltage Direct Current (HVDC) electrical transmission. A plasma is created when a gas absorbs enough energy to separate the electrons from the nuclei, making it susceptible to electric and magnetic fields. In this project the team will develop a converter based principally on a single plasma component, rather than a system of capacitors and semiconductor switches. The concept is based on a recently discovered plasma configuration that utilizes helical electrodes along the perimeter of the plasma chamber to induce a current along the axis of the plasma. The current induced along the axis produces an output voltage and current at the ends of the plasma chamber, which enables efficient conversion of AC to DC or DC to DC. The project team seeks to develop a robust, economical plasma device to convert 3-phase AC to high quality DC. These devices have the potential to be half the cost and yield power densities 10x higher than state-of-the-art converters, and have the potential to significantly improve electrical use efficiencies in power transmission, distribution, micro-grids, datacenters, and in large, electrified platforms for transportation such as ships and trains.

Titanium Metals Corp.

A Vision of an Electrochemical Cell to Produce Clean Titanium

Titanium Metals Corporation (TIMET) is developing an electrochemical process for producing pure titanium powder. Incumbent titanium production processes require the importation of high-grade titanium ores. TIMET's groundbreaking design will enable the use of abundant, low-cost, domestic ore to produce titanium powder electrolytically. By totally revolutionizing the electrolysis process, TIMET can fully optimize the process more effectively using a unique approach. TIMET's electrochemical methods could produce higher quality titanium powder at lower cost and reduced energy consumption compared to the conventional Kroll process.

Transphorm, Inc.

Four-Quadrant GaN Switch Enabled Three-Phase Grid-Tied Microinverters

Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm's transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions--making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

Transphorm, Inc.

High-Performance GaN HEMT Modules for Agile Power Electronics

Transphorm is developing transistors with gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for a variety of applications, including electric motor drives which transmit power to a motor. A transistor acts like a switch, controlling the electrical energy that flows around an electrical circuit. Most transistors today use low-cost silicon semiconductors to conduct electrical energy, but silicon transistors don't operate efficiently at high speeds and voltage levels. Transphorm is using GaN as a semiconductor material in its transistors because GaN performs better at higher voltages and frequencies, and it is more energy efficient than straight silicon. However, Transphorm is using inexpensive silicon as a base to help keep costs low. The company is also packaging its transistors with other electrical components that can operate quickly and efficiently at high power levels--increasing the overall efficiency of both the transistor and the entire motor drive.

Triton Systems, Inc.

New Technology for Single Pane Retrofit

Triton Systems will develop and demonstrate a high efficiency windowpane system that will encourage retrofitting of single-pane windows. Triton's Multifunctional Glazing System (MGS) will potentially provide a better balance of performance with cost and weight versus double-pane insulated glass units. The system combines a nanoparticle-polymer composite film with an insulating layer of a porous material filled with air, to provide thermal insulation. The team will enhance the pane's durability by incorporating a nanocomposite edge seal. The thickness of the MGS will be less than ¼ inch, ensuring its compatibility with most single-pane window sashes as a direct glazing replacement.

UHV Technologies, Inc.

Low Cost X-Ray CT System for in-situ Imaging of Roots

UHV Technologies will develop and demonstrate a low cost, field deployable 3D x-ray computed tomography system that will image total root systems in the field with micron-size resolution and can sample hundreds of plants per cycle. This system is based on UHV's low cost linear x-ray tube technology and sophisticated reconstruction and image segmentation algorithms. The linear x-ray tube technology was originally designed for extremely high throughput scrap aluminum sorting, and when used with an array x-ray detector the system can also produce 2D and 3D imaging of plant roots in the field without the use of heavy, moving gantry systems normally used for trait observation. Maize (corn) was chosen as the crop to study due to its robust root system, well-characterized genetic resources, sequenced genome, and access to existing breeding pipelines with commercial potential. The system will be tested in two environments, at the University of Wisconsin with clay-like soil and at Texas A&M University which features sandy soil. Due to its small size, high resolution and fast imaging of fine roots, low power consumption, large penetration depth (i.e. the ability to see through several feet of soil) and ease of use in the field, the proposed system will increase the speed and efficacy of discovery and deployment of improved crops and systems. These advanced crops can improve soil carbon accumulation and storage, decrease nitrogen oxide emissions, and improve water efficiency. If successful, this new level of imaging will be invaluable to scientists seeking to understand how environmental conditions and plant trait variations contribute to carbon deposition through root development.

UHV Technologies, Inc.

Low-Cost High Throughput In-Line X-Ray Fluorescence Scrap Metal Sorter

UHV Technologies is developing a sorting technology that uses X-rays to distinguish between high-value metal alloys found in scrap of many shapes and sizes. Existing identification technologies rely on manual sorting of light metals, which can be inaccurate and slow. UHV's system will rapidly sort scrap metal passed over a conveyer belt, making it possible to lower metals waste while simultaneously increasing the quality of recycled metal alloys. By analyzing the light emitted from X-rayed metal pieces, UHV's probe is able to identify alloy compositions for automated sorting. By automating this process, UHV would significantly reduce the costs associated with recycling light metal scrap.

United Technologies Research Center

Additive Manufacturing of Optimized Ultra-High Efficiency Electric Machines

United Technologies Research Center (UTRC) is using additive manufacturing techniques to develop an ultra-high-efficiency electric motor for automobiles. The process and design does not rely on rare earth materials and sidesteps any associated supply concerns. Additive manufacturing uses a laser to deposit copper and insulation, layer-by-layer, instead of winding wires. EV motors rely heavily on permanent magnets, which are expensive given the high concentrations of rare earth material required to deliver the performance required in today's market. UTRC's efficient manufacturing method would produce motors that reduce electricity use and require less rare earth material. This project will also examine the application of additive manufacturing more widely for other energy systems, such as renewable power generators.

United Technologies Research Center

Power Conversion Through Novel Current Source Matrix Converter 

United Technologies Research Center (UTRC) will develop a silicon carbide-based, single stage, 15 kW direct AC-to-AC (fixed frequency AC to variable frequency AC) power converter that avoids the need for an intermediate conversion to DC or energy storage circuit elements. The team seeks to build a device that weighs about half as much as available converters while demonstrating scalability for a broad power range (from kW to tens of MW) and achieving conversion efficiencies greater than 99%. If successful, the UTRC team will produce advances that help greatly reduce energy losses in a range of industrial applications. Industrial drives for electric motors alone account for approximately 40% of total U.S. electricity demand and incorporation of highly efficient variable-frequency drives, based on this technology, can reduce energy consumption by 10-30%. For aircraft power systems, electrical actuators built using this technology can enable longer, thinner, and lighter wings that result in 50% reduced fuel consumption and carbon emissions when compared to current commercial aircraft. The project can also open new possibilities for electric locomotives and ship propulsion, thanks to the reduced weight and complexity of the converter.

United Technologies Research Center

Design of Ulra-Efficient, Manufacturable, and Low-Cost Thermal Fluid Components for Energy Systems

United Technologies Research Center (UTRC) will develop design tools and software for new thermofluidc components that can lead to 50% efficiency improvements in heat exchangers and other related energy systems. Modern heat exchangers and flow headers used in energy systems such as thermal power plants are not optimally designed due to a lack of advanced design tools that can optimize performance given manufacturing and cost limitations. UTRC's design framework will focus on topology exploration and optimization - the mathematical method of optimizing material layouts within a given design space for a given set of loads, conditions, and constraints. The design space will be redefined by emerging advancements in materials such as multi-material composites and custom microstructures. Constraints are imposed by manufacturing limitations and the application of new technologies such as 3D weaving and 3D printing. The requirements of next-generation systems will also be considered, for example, the high temperature and pressure requirements of advanced steam turbines. The design framework will assess the design space, constraints, and requirements using two key innovations. First, topology exploration methods developed for heat exchangers will harness emerging advancements in data sciences to produce new concept designs for the heat exchanger core, headers, and their assemblies. Second, a projection-based topology optimization method will optimize designs for specific manufacturing processes and costs. The new design framework may lead to greater than 50% improvements for heat exchangers by providing new ways to integrate advanced materials and manufacturing techniques.

United Technologies Research Center

Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

United Technologies Research Center (UTRC) is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC's air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems--carryover of the liquid drying agent into the conditioned air stream--which eliminates corrosion and health issues.

United Technologies Research Center

PEOPLE: Platform to Estimate Occupancy and Presence for Low Energy Buildings

United Technologies Research Center (UTRC) will develop a low-cost occupancy solution that combines radar sensing technology with an infrared focal plane array (IR-FPA) to determine occupancy in buildings. The solution will also be deployed as a radar-only residential sensor for true human presence sensing. The radar will detect respiration or heartbeat of non-moving occupants by measuring the radar signal reflections caused by chest movement. The system's machine learning algorithms will allow it to distinguish humans from pets in residential settings and to reduce under-counting errors in commercial deployments. The radar will enable through-wall presence sensing in multiple rooms by a single sensor, reducing the sensor hardware and installation cost on a per square foot basis. The solution aims to address the high cost and failure rate of current presence sensors that are preventing large-scale adoption of occupancy based control of HVAC, lighting, and plug loads.

Pages

Subscribe to Efficiency