Sorry, you need to enable JavaScript to visit this website.

Efficiency

University of Maryland

Novel Microemulsion Absorption Systems For Supplemental Power Plant Cooling

The University of Maryland (UMD) and its partners will utilize a novel microemulsion absorbent, recently developed by UMD researchers, for use in an absorption cooling system that can provide supplemental dry cooling for power plants. These unique absorbents require much less heat to drive the process than conventional absorption materials. To remove heat and cool condenser water, microemulsion absorbents take in water vapor (refrigerant) and release the water as liquid during desorption without vaporization or boiling. UMD's technology will use waste heat from the power plant's flue gas to drive the cooling system, eliminating the need for an additional power source. The design will improve upon the efficiency of commercially available chillers by 300%, even though the cost and size of UMD's technology is smaller. The indirect, absorption cooling system will lower condenser water temperatures to below the ambient temperature, which will ensure the efficiency of power plant electricity production.

University of Maryland

Novel Polymer Composite Heat Exchanger for Dry Cooling of Power Plants

The University of Maryland (UMD) and its partners will utilize UMD's expertise in additive manufacturing (3D printing) and thermal engineering to develop novel, polymer-based, air-cooled heat exchangers for use in indirect dry-cooling systems. The innovation leverages UMD's proprietary, cross media heat exchanger concept in which a low-cost, high-conductivity medium, such as aluminum, is encapsulated as a fiber in a polymeric material to facilitate more effective heat dissipation. To realize the innovative heat exchanger design, the team will develop an advanced, multi-head, composite 3D printer. The heat exchanger modules will be arranged in uniform rows with large spacing between the rows, which optimizes heat transfer while allowing for easier cleaning and maintenance. In addition to the system's advanced cooling capacities, the heat exchangers will also be low-cost, low-weight, and resistant to corrosion. Ideally, UMD's technology will be used in conjunction with a direct contact steam condenser in order to provide power plant cooling with performance comparable to evaporative, or wet-cooling, systems. UMD estimates that additive manufacturing could enable transformational heat exchanger designs with high performance at low cost, including the potential for onsite manufacturing of the heat exchanger, which could save additional transportation and installation costs.

University of Maryland

Thermoelastic Cooling

The University of Maryland (UMD) is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material--an elastic shape memory metal alloy--as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

University of Maryland

Electrochemical Compression for Ammonia Storage and Refrigeration System

The University of Maryland (UMD) will develop an electrochemical compression technology for ammonia. Electrochemical (an alternative to mechanical) compression has rarely been considered for ammonia, and the UMD team seeks to develop a new method to raise the compression efficiency from its current rate of 65% to the long term goal of up to 90%. If successful, replacing mechanical ammonia compression processes with electrochemical ones could save up to 10% of electricity consumed by commercial buildings while eliminating related carbon emissions and saving up to $3.5 billion annually for the United States. Using UMD's method, ammonia is electrochemically compressed using a proton exchange membrane electrochemical cell with hydrogen as a carrier gas. Unlike mechanical compression, the team's electrochemical device has no moving parts or lubrication oil and does not produce any noise. The successful demonstration of electrochemical ammonia compression will stimulate more research on the transfer of not only ammonia but other fluids using similar approaches, as well as the exploration of ion exchange membranes for other types of electrochemical gas transfer. The technical goal of Maryland's research is the construction and evaluation of a 50 W electrochemical compression stack that can compress ammonia from 1 atm to 10 atm in a single step with an ammonia flow rate of 0.045 g/s and a compression efficiency of over 70%.

University of Maryland

Melt Epitaxy of Carbon: A Silicon-inspired Approach to Next-Generation Electrical Wires

The University of Maryland (UMD) will develop a new method called "Melt Epitaxy of Carbon" for the production of lightweight, high-capacity carbon wires from carbon nanotubes. Metallic carbon nanotubes are lightweight, high-capacity conductors that exceed the current carrying capacity of metals like copper. The current density of carbon nanotubes is nearly 1,000 times greater than at the electromigration limit of copper. On a weight basis, carbon nanotubes have an additional 6-fold advantage over copper because of their reduced density. Carbon nanotubes can reduce the weight of wires as much as 90% in weight-critical applications such as aircraft. Epitaxy refers to the deposition of a crystalline overlayer on a crystalline substrate, and it is widely used to create materials for semiconductor fabrication. In this process, the team will use a similar method to produce the carbon conductors. Although carbon nanotubes can also be synthesized using chemical vapor deposition, this new method is predicted to deliver improved yield and greater control over the structure and electrical properties of the nanotubes. This method is also more scalable than other methods of nanotube creation and at reduced costs.

University of Maryland

Meta-Cooling Textile with Synergetic Infrared Radiation and Air Convection for Bidirectional Thermoregulation

Led by Dr. YuHuang Wang, the "Meta Cooling Textile (MCT)" project team at the University of Maryland (UMD) is developing a thermally responsive clothing fabric that extends the skin's thermoregulation ability to maintain comfort in hotter or cooler office settings. Commercial wearable localized thermal management systems are bulky, heavy, and costly. MCT marks a potentially disruptive departure from current technologies by providing clothing with active control over the primary channels for energy exchange between the body and the environment. In hotter surroundings, the fabric's pores open up to increase ventilation while changes in the microstructure of the fabric increase the amount of energy transmitted through the fabric from the wearer. In cooler conditions, these effects are reversed to increase the garment's ability to insulate the wearer. The added bidirectional regulation capacity will enable the wearer to expand their thermal comfort range and thus relax the temperature settings in building.

University of Maryland

A Case Study on the Impact of Additive Manufacturing for Heat/Mass Transfer Equipment used for Power Production

The University of Maryland (UMD) will leverage recent advances in additive manufacturing to develop a next-generation air-cooled heat exchanger. The UMD team will assess the performance and cost of current state-of-the-art technology, including innovative manufacturing processes. The team will then utilize computer models to simulate a wide-range of novel heat exchanger designs that can radically enhance air-side heat transfer performance. The team will then physically build and test two 1 kilowatt (kW) prototype devices. If successful, these heat exchangers would enable new, highly-efficient dry cooling of steam condensers that could eliminate evaporative water losses from power plant cooling. Advances in efficient air-side cooling could also have significant spillover benefits in aerospace, automobile, air-conditioning and refrigeration, electronics cooling, and chemical processing.

University of Maryland

Robotic Personal Conditioning Device

The University of Maryland (UMD) will develop a robotic personal attendant providing improved comfort levels for individuals in inadequately heated/cooled environments. This mobile robotic platform will be fitted with a small, battery-powered, high-efficiency vapor compression heat pump and will be highly portable and able to follow an assigned person around during the course of the day, providing localized heating and/or cooling as needed while reducing the energy required to heat and cool buildings.

University of Minnesota

Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare-Earth-Free Magnet

The University of Minnesota (UMN) is developing an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

University of Minnesota

Flexible Molecular Sieve Membranes

The University of Minnesota (UMN) is developing an ultra-thin separation membrane to decrease the cost of producing biofuels, plastics, and other industrial materials. Nearly 6% of total U.S. energy consumption comes from the energy used in separation and purification processes. Today's separation methods used in biofuels production are not only energy intensive, but also very expensive. UMN is developing a revolutionary membrane technology based on a recently discovered class of ultra-thin, porous, materials that will enable energy efficient separations necessary to prepare biofuels that would also be useful in the chemical, petrochemical, water purification, and fossil fuel industries. These membranes, made from nanometer-thick layers of silicon dioxide, are highly selective in separating nearly-identical chemicals and can handle high flow rates of the chemicals. When fully developed, these membranes could substantially reduce the amount and cost of energy required in the production of biofuels and many other widely used industrial chemicals.

University of Missouri

High quality GaN FETs through Transmutation Doping and Low Temperature Processing

The University of Missouri will develop neutron transmutation doping of GaN to fabricate uniform heavily doped n-type GaN wafers. GaN has long been proposed as a superior material for power electronic devices due to the intrinsic material advantages such as greater breakdown voltages and greater stability. Unfortunately, the fabrication of GaN wafers with uniform and high levels of dopants is challenging due to a lack of sufficient control during the existing crystal growth methods. The neutron transmutation doping process, which consists of exposing GaN wafers to neutron radiation to create a stable network of the dopant germanium within the GaN wafer, allows for a greater degree of precision and results in a high level, uniform doping concentrations across the wafer. With this method, repeatable production of high quality GaN substrates may be achieved. Specific innovations in this proposal concern an in-depth study of neutron transmission doping and a characterization of the resulting wafer, including analyzing resistivity, dopant concentration, unwanted impurities, and damage to the GaN lattice.

University of Nebraska, Lincoln

Voltage and Frequency Power Converter Based on Electromagnetic Induction

The University of Nebraska, Lincoln (UNL) will develop an innovative concept for an electromagnetic induction-based static power converter for AC to AC electrical conversions. Their method will use a new device, the magnetic flux valve, to actively control the magnetic flux of the converter. The voltages induced across the device can be controlled by varying the magnetic fluxes. By synthesizing the induced voltages appropriately, the converter can take an AC input and generate an AC output with controllable amplitude, frequency, and waveform. During this project, the team plans to prove the concept of the magnetic flux valve; prove the concept for variable-frequency and variable voltage AC-AC electrical energy conversion; and conduct a study on the scalability of the magnetic flux valve and electromagnetic power converter concepts. If successful, the technology has the potential to achieve lower cost, higher energy density, and higher efficiency than traditional energy conversion technologies. More efficient conversion technologies for high voltage and high power applications can lead to new innovations in renewable power generation and smart grid applications.

University of North Dakota Energy & Environmental Research Center

Novel Dry Cooling Technology for Power Plants

University of North Dakota Energy & Environmental Research Center (UND-EERC) is developing an air-cooling alternative for power plants that helps maintain operating efficiency during electricity production with low environmental impact. The project addresses the shortcomings of conventional dry cooling, including high cost and degraded cooling performance during daytime temperature peaks. UND-EERC's device would use an air-cooled adsorbent liquid that results in more efficient power production with no water consumption. The technology could be applied to a broad range of plants including fossil, nuclear, solar thermal, and geothermal.

University of Notre Dame

Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

The University of Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone--making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems--enabling new use of CO2 as a refrigerant in cooling systems.

University of Notre Dame

CO2 Capture with Ionic Liquids Involving Phase Change

The University of Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-of-the-art technology.

University of Pittsburgh

CO2 Thickeners to Improve the Performance of CO2 Enhanced Oil Recovery and CO2 Fracturing

The University of Pittsburgh (Pitt) is developing a compound to increase the viscosity of--or thicken--liquid carbon dioxide (CO2). This higher-viscosity CO2 compound could be used to improve the performance of enhanced oil recovery techniques. Crude oil is found deep below the surface of the earth in layers of sandstone and limestone, and one of the ways to increase our ability to recover it is to inject a high-pressure CO2 solvent into these layers. Unfortunately, because the solvent is less viscous--or thinner--than oil, it is not robust enough to uniformly sweep the oil out of the rock and toward the oil well. Pitt's CO2-thickeners would improve the performance of the solvents involved in this process, allowing it to carry higher concentrations of oil to the surface. The thickeners would decrease the cost and increase the efficiency of enhanced oil recovery, and could also serve to enable liquid CO2 as a replacement for the water used during recovery, offering significant environmental benefits.

University of Southern California

System Testbed, Evaluation, and Architecture Metrics: STEAM

The University of Southern California (USC) will develop a framework and testbed for evaluating proposed photonic and optical-electronic interconnect technologies, such as those developed under the ARPA-E ENLITENED program. These new approaches will develop novel network topologies enabled by integrated photonics technologies, which use light instead of electricity to transmit information. USC's effort aims to offer an impartial assessment of these emerging datacenter concepts and architectures and their ability to reduce overall power consumption in a meaningful way. The team will focus on developing architecture specifications and models to assess the effects of photonic project components on system performance and efficiency, making it possible to quantify the potential energy reduction in datacenters. Specifically, they will simulate the impact on overall energy efficiency of dramatically different traffic, loading, and architectural configurations and then identify how individual new technologies such as optical components, optical switches, and transceivers, affect efficiency. The team expects that capabilities and facilities influenced by the project will form the basis of a national facility for evaluating new concepts for datacenter operations and the role of photonics in those systems.

University of Tennessee

Advanced Reversible Aqueous Air Electrode

The University of Tennessee (UT) will develop a reversible Oxygen Reduction Reaction (ORR) catalyst that can be used both as a peroxide-producing electrolyzer and in reversible air batteries. The ORR catalyst development seeks to significantly improve peroxide electrolysis efficiency and achieve high charge and discharge rates in air-breathing batteries. In conjunction with the new catalyst, an anion exchange membrane (AEM) will be used to further increase the electrolyzer efficiency and reduce peroxide production costs. In the reversible air battery, the AEM increases battery power performance. Finally, a two-phase flow field design will increase both the current density and current efficiency for peroxide production and can also be used in the reversible air battery to build up a high concentration of hydrogen peroxide for energy storage. This technology could also enable onsite hydrogen peroxide production at small scale.

University of Texas, Austin

Low-Cost Solution Processed Universal Smart Window Coatings

The University of Texas at Austin (UT Austin) is developing low-cost coatings that control how light enters buildings through windows. By individually blocking infrared and visible components of sunlight, UT Austin's design would allow building occupants to better control the amount of heat and the brightness of light that enters the structure, saving heating, cooling, and lighting costs. These coatings can be applied to windows using inexpensive techniques similar to spray-painting a car to keep the cost per window low. Windows incorporating these coatings and a simple control system have the potential to dramatically enhance energy efficiency and reduce energy consumption throughout the commercial and residential building sectors, while making building occupants more comfortable.

University of Texas, Dallas

Double-Stator Switched Reluctance Motor Technology

University of Texas at Dallas (UT Dallas) is developing a unique electric motor with the potential to efficiently power future classes of EVs and renewable power generators. Unlike many of today's best electric motors--which contain permanent magnets that use expensive, imported rare earths--UT Dallas' motor completely eliminates the use of rare earth materials. Additionally, the motor contains two stators. The stator is the stationary part of the motor that uses electromagnetism to help its rotor spin and generate power. The double-stator design has the potential to generate very high power densities at substantially lower cost than existing motors. In addition, this design can operate under higher temperatures and in more rugged environments. This project will focus on manufacturing and testing of a 100 kW motor with emphasis on low cost manufacturing for future use in EVs and renewable power generators.

Pages

Subscribe to Efficiency