Sorry, you need to enable JavaScript to visit this website.

Efficiency

Opcondys, Inc.

A Bidirectional, Transformerless Converter Topology for Grid-Tied Energy Storage Systems 

Opcondys will develop a high-voltage power converter design for energy storage systems connected directly to the power grid. Opcondys' converter design will use a modified switched multiplier topology that will allow connection to utility transmission lines without intervening step-up transformers. It uses a photonic, wide bandgap power switching device called the Optical Transconductance Varistor. This is a fast, high-voltage, bidirectional device which reduces the number of circuit elements required for charging and discharging the storage element. By operating at 100 kHz it is possible to increase efficiency to 99% compared to 95-98% efficiency of traditional converters. The system also reduces the size of the passive elements by 50% and, because of the optical control, mitigates electromagnetic interference issues. The elimination of step-up transformers further reduces system size, and can enable a lower cost than existing systems. If successful, project developments could open the door to increased integration of grid-level energy storage.

Otherlab, Inc.

Passive Thermo-Adaptive Textiles with Laminated Polymer Bimorphs

Otherlab will develop thermally adaptive materials that change their thickness in response to temperature changes, allowing the creation of garments that passively respond to variations in temperature. In contrast to existing garments that have a constant insulation value whether conditions are hot or cold, thermally adaptive materials change shape as temperature changes, leading to a change in insulation. The material change is a physical response, passively operating and requiring no input from the wearer or any control system. Garments made from thermally adaptive fabrics will enable the wearing of fewer layers of clothing for comfort over a broader temperature range, effectively lowering the heating and cooling requirements for buildings. Beyond apparel, this advanced insulation may find applications in drapery and bedding.

Pacific Northwest National Laboratory

Catalyzed Organo-Metathetical (COMET) Process for Magnesium Production from Seawater

Pacific Northwest National Laboratory (PNNL) is developing a radically new process to produce magnesium from seawater. Today's methods are energy intensive and expensive because the magnesium concentration in seawater is so low that significant energy is needed to evaporate off water and precipitate magnesium chloride salt. Further, conventional technologies involve heating the salt to 900°C and then using electric current to break the chemical bond between magnesium and chlorine to produce the metal. PNNL's new process replaces brine spray drying with a low-temperature, low-energy dehydration process. That step is combined with a new catalyst-assisted process to generate an organometallic reactant directly from magnesium chloride. The organometallic is decomposed to magnesium metal via a proprietary process at temperatures less than 300°C, thus eliminating electrolysis of magnesium chloride salt. The overall process could be significantly less expensive and more efficient than any conventional magnesium extraction method available today and uses seawater as an abundant, free resource.

Pacific Northwest National Laboratory

High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

Pacific Northwest National Laboratory (PNNL) is designing more efficient adsorption chillers by incorporating significant improvements in materials that adsorb liquids or gases. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, an adsorption chiller has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level that have at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower material and assembly costs compared to conventional adsorption chillers. PNNL received a separate award of up to $2,190,343 from the Department of the Navy to help decrease military fuel use.

Pacific Northwest National Laboratory

Manganese-Based Permanent Magnet with 40 MGOe at 200°C

Pacific Northwest National Laboratory (PNNL) is working to reduce the cost of wind turbines and EVs by developing a manganese-based nano-composite magnet that could serve as an inexpensive alternative to rare-earth-based magnets. The manganese composite, made from low-cost and abundant materials, could exceed the performance of today's most powerful commercial magnets at temperature higher than 200°C. Members of PNNL's research team will leverage comprehensive computer high-performance supercomputer modeling and materials testing to meet this objective. Manganese-based magnets could withstand higher temperatures than their rare earth predecessors and potentially reduce the need for any expensive, bulky engine cooling systems for the motor and generator. This would further contribute to cost savings for both EVs and wind turbines.

Palo Alto Research Center

Probing Alloys for Rapid Sorting Electrochemically (PARSE)

Palo Alto Research Center (PARC) is developing an advanced diagnostic probe that identifies the composition of light metal scrap for efficient sorting and recycling. Current sorting technologies for light metals are costly and inefficient because they cannot distinguish between different grades of light metals for recycling. Additionally, state-of-the-art electrochemical probes rely on aqueous electrolytes that are not optimally suited for separating light metal scrap. PARC's probe, however, uses a novel liquid, which enables a chemical reaction with light metals to represent their alloy composition accurately. A probe that is more accurate than existing methods could separate scrap based on alloy quality to obtain low-cost, high-quality aluminum.

Palo Alto Research Center

Large-Area Thermoelectric Generators (LATEGs) for Low-Grade Waste Heat Harvesting

Palo Alto Research Center (PARC) is developing high performance, low-cost thermoelectric devices on flexible substrates that will enable the capture of low-temperature waste heat (100°C to 250°C), an abundant and difficult-to-harness energy resource. PARC's innovative manufacturing process is based on their co-extrusion printing technology which can simultaneously deposit different materials at high speed thereby facilitating fast, large-area production at low cost. Flexible thermoelectric devices will broaden their utility to applications on non-flat surfaces such as wrapping heat transfer piping. Additionally, since thermoelectrics can be applied directly onto most waste heat sources, expensive heat exchangers to transfer heat to a generator are unnecessary. PARC's existing co-extrusion printing technology, paired with partner Novus Energy's nanomaterials, is uniquely suited for the development of Large Area Thermoelectric Generator (LATEG) technology on flexible substrates, as it allows for the optimization of microscale device structures while maintaining the nanoscale properties of the materials through a process that is scalable to low cost, large-area manufacturing. If successful, development and deployment of efficient flexible thermoelectric technologies would enable recapture of a large amount of wasted energy in the U.S. industrial sector.

Palo Alto Research Center

Metamaterials-Enhanced Passive Radiative Cooling Panels

Palo Alto Research Center (PARC), working with SPX Cooling Technologies, is developing a low-cost, passive radiative cooling panel for supplemental dry cooling at power plants. PARC's envisioned end product is a cooling module, consisting of multiple radiative cooling panels tiled over large, enclosed water channels that carry water from an initial cooling system, such as a dry-cooling tower. The cooling panel consists of a two-layer structure in which a reflective film sits atop a unique metamaterial-based emitter. In this architecture, the top layer completely reflects sunlight while the bottom layer effectively emits infrared radiation through a spectral window in the earth's atmosphere. This combination enables radiative cooling of the water even in full illumination by the sun. The cooling panel will be made using a lithography-free process compatible with roll-to-roll fabrication. In a large-scale system, the water temperature at the outlet of the cooling module is expected to be 8oC cooler than the temperature of the water at the inlet, which will result in a 3% efficiency gain for the power plant.

Palo Alto Research Center

System of Printed Hybrid Intelligent Nano-Chemical Sensors (SPHINCS)

Palo Alto Research Center (PARC) will work with BP and NASA's Ames Research Center to combine Xerox's low-cost print manufacturing and NASA's gas-sensing technologies to develop printable sensing arrays that will be integrated into a cost-effective, highly sensitive methane detection system. The system will be based on sensor array foils containing multiple printed carbon nanotube (CNT) sensors and supporting electronics. Each sensor element will be modified with dopants, coatings, or nanoparticles such that it responds differently to different gases. Through principal component analysis and machine learning techniques, the system will be trained for high sensitivity and selectivity for components of natural gas and interfering compounds. The goal is to be able to detect methane emissions with a sensitivity of 1 ppm and localize the source of emissions to within 1 meter, offering enhanced precision when compared to current equipment. By using low-cost printing techniques, the project team's system could offer an affordable alternative to more expensive optical methane detectors on the market today.

Palo Alto Research Center

Scalable Transparent Thermal Barriers Fof Single-Pane Window Retrofits

Palo Alto Research Center (PARC) and its partners are developing a low-cost, transparent thermal barrier, consisting of a polymer aerogel, to improve insulation in single-pane windows. The proposed high-performance thermal barrier is anticipated to achieve ultra-low thermal conductivity, while offering mechanical robustness and the visual appearance of clear glass. Additionally, the thermal barrier's synthesis is scalable and thus amenable to high volume manufacturing. The envisioned replacement windowpane is a tri-layer stack consisting of the aerogel, glass, and a low-emissivity coating - an architecture designed to improve the window's energy efficiency, condensation resistance, user comfort, and soundproofing. In this project, PARC will optimize the transparent polymer aerogel synthesis process; Blueshift will scale up fabrication to a 12-inch roll-to-roll pilot process; and Pilkington will evaluate the windowpane performance and durability. At the completion of the project, the aerogel will be integrated in a 12" x 12" windowpane prototype with commercial-off-the-shelf float glass, adhesives, and coatings. The final product will be a windowpane of similar weight and thickness to existing single panes. Based on current raw material and manufacturing costs, PARC foresees that this integrated windowpane can be manufactured at a low cost of $9/ft2.

Pennsylvania State University

One-Ton Thermoacoustic Air Conditioner

Pennsylvania State University (Penn State) is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State's chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

Phinix, LLC

Production of Primary Quality Magnesium and Al-Mg Alloys from Secondary Aluminum Scraps

Phinix is developing a specialized cell that recovers high-quality magnesium from aluminum-magnesium scrap. Current aluminum refining uses chlorination to separate aluminum from other alloys, which results in a significant amount of salt-contaminated waste. Rather than using the conventional chlorination approach, Phinix's cell relies on a three-layer electrochemical melting process that has proven successful in purifying primary aluminum. Phinix will adapt that process to purify aluminum-magnesium scrap, recovering magnesium by separating that scrap based on the different densities within its mix. Phinix's cell could offer increased flexibility in managing costs because it can handle scrap of various chemical compositions, making use of scrap that is currently in low demand. With a more efficient design, the cell can recover and reuse aluminum-magnesium scrap at low cost with minimal waste.

Physical Sciences Inc.

RMLD-Sentry for Upstream Natural Gas Leak Monitoring

Physical Sciences, Inc. (PSI), in conjunction with Heath Consultants Inc., Princeton University, the University of Houston, and Thorlabs Quantum Electronics, Inc., will miniaturize their laser-based Remote Methane Leak Detector (RMLD) and integrate it with PSI's miniature unmanned aerial vehicle (UAV), known as the InstantEye, to create the RMLD-Sentry. The measurement system is planned to be fully autonomous, providing technical and cost advantages compared to manual leak detection methods. The team anticipates that the system would have the ability to measure ethane, as well as methane, which would allow it to distinguish biogenic from thermogenic sources. The RMLD-Sentry is planned to locate wellpad leak sources and quantify emission rates by periodically surveying the wellpad, circling the facility at a low altitude, and dynamically changing its flight pattern to focus in on leak sources. When not in the air, RMLD-Sentry would monitors emissions around the perimeter of the site. If methane is detected, the UAV would self-deploy and search the wellpad until the leak location is identified and flow rate is quantified using algorithms to be developed by the team. PSI's design is anticipated to facilitate up to a 95% reduction in methane emissions at natural gas sites at an annualized cost of about $2,250 a year - a fraction of the cost of current systems that allow for continuous monitoring. In addition to requiring less manpower for continuous monitoring, the team expects to develop techniques to reduce manufacturing costs for the laser sources by applying economies of scale and streamlined manufacturing processes.

Porifera, Inc.

Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today's carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera's carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

Princeton Optronics

Ultra-High Speed VCSELs for Optical Communication

Princeton Optronics will develop a new device architecture for optical interconnect links, which communicate using optical fibers that carry light. The maximum speed and power consumption requirement of data communication lasers have not changed significantly over the last decade, and state-of-the-art commercial technology delivers only 30 Gigabits per second (Gb/s). Increasing this speed has been difficult because the current devices are limited by resistance and capacitance constraints. Princeton Optronics will develop a novel device architecture to improve the data transfer and reduce the power consumption per bit by a factor of 10. They will use their expertise in vertical-cavity surface-emitting lasers (VCSELs) to design and build unique quantum wells - and increase the speed and lower the power consumption. The team aims to demonstrate speeds greater than 50 Gb/s, and perhaps 250 Gb/s devices in the future.

Princeton University

Fast Electrochemical Acoustic Signal Interrogation for Battery Lifetime Extrapolation

Princeton University is developing a non-invasive, low-cost, ultrasonic diagnostic system to determine battery state-of-health and state-of-charge, and to monitor internal battery defects. This system links the propagation of sound waves through a battery to the material properties of components within the battery. As a battery is cycled, the density and mechanical properties of its electrodes change; as the battery ages, it experiences progressive formation and degradation of critical surface layers, mechanical degradation of electrodes, and consumption of electrolyte. All of these phenomena affect how the sound waves pass through the battery. There are very few sensing techniques available that can be used during battery production and operation which can quickly identify changes or faults within the battery as they occur. As an ARPA-E IDEAS project, this early stage research project will provide proof of concept for the sensing technique and build a database of acoustic signatures for different battery chemistries, form factors, and use conditions. If successful, this ultrasonic diagnostic system will improve battery quality, safety, and performance of electric vehicle and grid energy storage systems via two avenues: (1) more thorough and efficient cell screening during production, and (2) physically relevant information for more informed battery management strategies.

Purdue University

Bio-Enabled Lightweight Metallic Structures with Ultrahigh Specific Strengths for Reduced Weight, Energy Use, and Emissions

Purdue University will develop new bio-inspired ultrahigh strength-to-weight ratio materials. To do so, they will develop porous metal replicas of diatom frustules, which are hollow silica (glass) structures that have evolved over millions of years to possess high resistance to being crushed by predators. They are targeting structures possessing high strengths (> 350 MPa or 50,763 PSI) and low densities (<1000 kg/m3), which they will evaluate using microscale mechanical tests and simulations. These results will then be used to develop scaling laws for the design of robust macroscopic structures from "millions" of individual metallic diatom replicas. If successful, it is hoped that the processes developed can be used to create ultrahigh strength-to-weight ratio vehicle parts that help to increase overall vehicle energy efficiency without sacrificing safety.

Purdue University

Building- Integrated Microscale Sensors for CO2 Level Monitoring

Purdue University will develop a new class of small-scale sensing systems that use mass and electrochemical sensors to detect the presence of CO2. CO2 concentration is a data point that can help enable the use of variable speed ventilation fans in commercial buildings, thus saving a significant amount of energy. There is also a pressing need for enhanced CO2 sensing to improve the comfort and productivity of people in commercial buildings, including academic spaces. The research team will develop a sensing system that leverages on-chip integrated organic field effect transistors (FET) and resonant mass sensors. Field effect transistors are chemical sensors that can transform chemical energy into electrical energy. The unique design allows the system to measure two distinct quantities as it absorbs CO2 from the environment - electrical impedance using the FET and added mass using the resonant mass sensors. The design will use low-cost circuit boards and off-the-shelf devices like commercial solar panels and batteries to reduce the cost of the system and enable easy deployment. By combining two unique sensing technologies into a single package, the team hopes to implement a solution for monitoring CO2 levels that could yield a nearly 30% reduction in building energy use.

QM Power, Inc.

Advanced Electric Vehicle Motors with Low or No Rare Earth Content

QM Power is developing a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today's EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power's motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

Qromis, Inc.

Reliable and Self-Clamped GaN Switch: 1.5 kV Lateral JFET scalable to 100A

Qromis will develop a new type of gallium nitride (GaN) transistor, called a lateral junction field effect transistor (LJFET) and investigate its reliability compared to other types of transistors, such as SiC junction field effect transistors (JFETs) and GaN-based high electron mobility transistors (HEMTs). Qromis' innovative LJFET design distributes and places the peak electric field away from the surface, eliminating a key point of failure that has plagued GaN HEMT devices and prevented them from achieving widespread use. If successful, this project will deliver a 1.5kV, 10A GaN LJET devices that would be scalable to 100A. The devices will be fabricated on thick, uniform GaN layers deposited on a coefficient of thermal expansion matched 8-inch QST® engineered platform that is compatible with current silicon processing equipment - reducing the cost of the devices. The uniform GaN layers on the large area platform will increase the yield of the devices further decreasing the cost. Finally, the thick GaN will enable the higher voltage standoff and improve the thermal management of the devices.

Pages

Subscribe to Efficiency