Sorry, you need to enable JavaScript to visit this website.


United Technologies Research Center

CO2 Capture with Enzyme Synthetic Analogue

United Technologies Research Center (UTRC) is developing a process for capturing the CO2 emitted by coal-fired power plants. Conventional carbon capture methods use high temperatures or chemical solvents to separate CO2 from the exhaust gas, which are energy intensive and expensive processes. UTRC is developing membranes that separate the CO2 out of the exhaust gas using a synthetic version of a naturally occurring enzyme used to manage CO2. This enzyme is used by all air-breathing organisms on Earth to regulate CO2 levels. The enzyme would not survive within the gas exhaust of coal-fired power plants in its natural form, so UTRC is developing a synthetic version designed to withstand these harsh conditions. UTRC's technology does not require heat during processing, which could allow up to a 30% reduction in the cost of carbon capture.

United Technologies Research Center

Water-Based HVAC System

United Technologies Research Center (UTRC) is developing an efficient air conditioning compressor that will use water as the refrigerant. Most conventional air conditioning systems use hydrofluorocarbons to cool the air, which are highly potent GHGs. Because water is natural and non-toxic, it is an attractive refrigerant. However, low vapor density of water requires higher compression ratios, typically resulting in large and inefficient multi-stage compression. UTRC's design utilizes a novel type of supersonic compression that enables high-compression ratios in a single stage, thus enabling more compact and cost-effective technology than existing designs. UTRC's water-based air conditioner system could reduce the use of synthetic refrigerants while also increasing energy efficiency.

University of Alabama

Quantification of HVAC Energy Savings for Occupancy Sensing in Buildings Through an Innovative Testing Methodology

The University of Alabama and their partners will develop a new testing and validation protocol for advanced occupancy sensor technologies. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of these systems. To address this need, the Alabama team will develop a testing protocol and simulation suite for these advanced sensors. The protocol and simulation suite will take into account eight levels of diversity: 1) occupant profile, 2) building type and floor plan, 3) sensor type, 4) HVAC controls and modes (e.g., temperature and/or ventilation setback), 5) functional testing diversity, 6) deployment diversity (e.g., sensor location), 7) software diversity (e.g., computation at local vs. hub), and 8) diagnostic diversity (e.g., interpret missing data). The regime's simulation tools will take advantage of data analytics with built-in machine learning algorithms to accurately determine energy savings. Technical results from the testing and validation work will support technology to market efforts, including codes and standards updates.

University of Alabama

Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today's best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

University of Arkansas

Reliable, High Power Density Inverters for Heavy Equipment Applications

The University of Arkansas and its project team will develop a power inverter system for use in the electrification of construction equipment. Heavy equipment providers are increasingly investing in electrification capability to perform work in harsh environments. As with all electrified systems, size, weight and power considerations must be met by these systems. The team's approach is to utilize the advantages of wide bandgap semiconductors not only in the converter elements themselves, but also in the converter's gate driver as well. This innovation of having the low-voltage circuitry built from the same materials as the power devices enables higher reliability, longer life, and a more compact system packages. Their multi-objective optimization method will provide the best outcome and trade the efficiency and power density goals against circuit complexity, device ratings, thermal management, and reliability constraints. If successful, the team will achieve an improvement of four times the power density and reduce converter cost by 50% compared to today's technology. The proposed design methods and technological advances can also be applied to many applications such as electric vehicles, smart grid power electronics, and data centers.

University of California - Irvine

Thermocomfort Cloth Inspired by Squid Skin

The University of California, Irvine (UC Irvine) will develop a dynamically adjustable thermoregulatory fabric. This fabric leverages established heat-managing capabilities of space blankets and color-changing polymers inspired by squid skin that will provide wearers with the unique ability to adaptively harness their own individual radiant heat production. This technology holds the potential to establish an entirely new line of personal apparel and localized thermal management products that could significantly reduce the energy required to heat and cool buildings.

University of California, Berkeley

Extreme Efficiency 240 Vac to Load Data Center Power Delivery Topologies and Control

The University of California, Berkeley (UC Berkeley) and its project team will develop an extremely efficient AC-to-DC converter based on gallium nitride (GaN) devices for use in datacenters. Datacenters are the backbones of modern information technology and their physical size and power consumption is rapidly growing. Converters for datacenters need to be power dense and efficient to maximize the computing power per unit volume and to reduce operating costs and environmental impact. This project team seeks to develop a prototype device that converts power from a universal grid input (110-240 V at 50-60 Hz) to 48 V DC, the standard for datacenter and telecom supply. The team hopes that this GaN-based converter will enable a complete redesign of the power delivery network for future datacenters; while achieving a three-fold reduction in energy loss and 10 times improvement in power density over traditional conversion circuits. If successful, project developments will greatly reduce the amount of energy lost powering datacenters while significantly improving power capability over current converters.

University of California, Berkeley

IceNet for FireBox

The University of California, Berkeley (UC Berkeley) will develop a new datacenter network topology that will leverage the energy efficiency and bandwidth density through the integration of silicon photonics into micro electro-mechanical system (MEMS) switches. Today's datacenter architectures use server nodes (with processor and memory) connected via a hierarchical network. In order to access a remote memory in these architectures, a processor must access the network to get to a particular server node, gaining access to the local memory of that server. This requires the remote server processor to be awake at all times in order to service the remote request. The processor-to-memory network has many stages and long latency, which results in significant energy waste in processor and memory idling on both sides of the network. The IceNet network is designed to achieve ultra-low latency connectivity between processor nodes and memory, drastically reducing energy wasted during system idling. A key component to the team's design is their LightSpark active laser power-management system. In addition to guiding the laser power where it is needed, the LightSpark module enables both wavelength and laser redundancy, increasing the robustness of the system. In total, the IceNet network will enable dramatic improvements in datacenter system efficiency, allowing for fine-grain power control of processors, links, and memory and storage components.

University of California, Berkeley

Developing Metal-Organic Frameworks as Adsorbents for Industrial Carbon Capture Applications

The University of California, Berkeley (UC Berkeley) is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. UC Berkeley uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

University of California, Berkeley

Enabling Ultra-Compact, Lightweight, Efficient, and Reliable 6.6 kW On-Board Bi-Directional Electric Vehicle Charger with Advanced Topology and Control

The University of California, Berkeley (UC Berkeley) and its project team will develop an on-board electric vehicle charger using a gallium nitride (GaN) based converter to improve power density and conversion efficiency. Conventional power converter topologies which primarily use magnetics (i.e. inductors and transformers) for energy transfer suffer from a tradeoff between efficiency and size. In this project, the team proposes a shift in traditional charger design to develop a bidirectional converter dominated by capacitor-based energy transfer. The team will leverage recent advances in GaN devices and new control techniques to produce a 6.6 kW converter with 15 times the power density and higher efficiency than currently achievable. The bidirectional flow means that the device can act to charge the electric vehicle or operate in a vehicle-to-grid manner to use the vehicle as short term energy storage. If successful, project developments could help reduce the size and complexity of electric vehicle power systems.

University of California, Berkeley

Rapid Building Energy Modeler - RAPMOD

The University of California, Berkeley (UC Berkeley) and Indoor Reality are developing a portable scanning system and the associated software to rapidly generate indoor thermal and physical building maps. This will allow for cost-effective identification of building inefficiencies and recommendation of energy-saving measures. The scanning system is contained in a backpack which an operator would wear while walking through a building along with a handheld scanner. The backpack features sensors that collect building data such as room size and shape along with associated thermal characteristics. These data can then be automatically processed to detect building elements, such as windows and lighting, and then generate 2D floor plans and 3D maps of the building geometry and thermal features. The backpack technology enables rapid data collection and export to existing computer models to guide strategies that could reduce building energy usage. Because the skills required to operate this technology are less than required for a traditional energy audit and the process is significantly faster, the overall cost of the audit can be reduced and the accuracy of the collected data is improved. This reduced cost should incentivize more building managers to conduct energy audits and implement energy saving measures.

University of California, Berkeley

Heating and Cooling the Human Body with Wirelessly Powered Devices

The University of California, Berkeley (UC Berkeley) will team with WiTricity to develop and integrate highly resonant wireless power transfer technology to deliver efficient local thermal amenities to the feet, hands, face, and trunk of occupants in workstations. Until now, local comfort devices have had little market traction because they had to be tethered by a cord to a power source. The team will leverage on-going developments in wireless charging systems for consumer electronics to integrate high-efficiency power transmitting devices with local comfort devices such as heated shoe insoles and cooled and heated office chairs. The team will develop four types of local comfort devices to deliver heating and cooling most effectively. The devices will draw very little electrical power and enable potential HVAC energy savings of at least 30%.

University of California, Los Angeles

Compact MEMS Electrocaloric Cooling Module

The University of California, Los Angeles (UCLA) is developing a novel solid state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed--effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

University of California, Los Angeles

THermally INsulating TraNsparEnt BarrieR (THINNER) Coatings for Single-Pane Windows

The University of California, Los Angeles (UCLA) will harness advances in nanotechnology to produce thermally insulating transparent barrier (THINNER) coatings to reduce heat losses through single panes of glass. The porous coatings consist of multiple layers of silica/titania films that can simultaneously control the transmission of heat, light and thermal radiation. The internal structure of the coatings is determined by a polymer lattice that is later removed. This leaves a robust porous oxide layer that is transparent and thermally insulating. In addition to reducing heat loss, the coatings will reduce water condensation on the inner window surface and block harmful ultraviolet light. The project will also develop a scalable, high-temperature spray-on process to inexpensively deposit the coating onto glass at the factory.

University of California, San Diego

Adaptive Textiles Technology with Active Cooling & Heating (ATTACH)

The University of California, San Diego (UC San Diego) will develop smart responsive garments that enable building occupants to adjust their personal temperature settings and promote thermal comfort to reduce or eliminate the need for building-level air conditioning. The essence of building energy savings in UC San Diego's approach is based on the significant energy consumption reduction from the traditional global cooling/heating of the whole room space. This is done via localized cooling and heating only in the wearable structure in the very limited space near a person's skin. This smart textile will thermally regulate the garment's heat transport through changes in thickness and pore architecture by shrinking the textile when hot and expanding it when cold.

University of California, San Diego

LEED: A Lightwave Energy-Efficient Datacenter

The University of California, San Diego (UC San Diego) will develop a new datacenter network based on photonic technology that can double the energy efficiency of a datacenter. Their LEED project mirrors the development of CPU processors in PCs. Previous limitations in the clock rate of computer processors forced designers to adopt parallel methods of processing information and to incorporate multiple cores within a single chip. The team envisions a similar development within datacenters, where the advent of parallel lightwave networks can act as a bridge to more efficient datacenters. This architecture leverages advanced photonic switching and interconnects in a scalable way. Additionally, the team will add a low-loss optical switch technology that routes the data traffic carried as light waves. They will also add the development of packaged, scalable transmitters and receivers that can be used in the system without the need for energy-consuming optical amplification, while still maintaining the appropriate signal-to-noise ratio. The combination of these technologies can create an easily controllable, energy-efficient architecture to help manage rapidly transitioning data infrastructure to cloud-based services and cloud-based computing hosted in datacenters.

University of California, San Diego

"Thinner Than Air": Polymer-Based Coatings of Single-Pane Windows

The University of California, San Diego (UCSD) will develop a polymer-based thermal insulating film that can be applied onto windowpanes to reduce heat loss and condensation. The team's approach uses polymer-based coatings with specifically designed structures. Heat management is gained by the thermal conductivity of polymer and the internal thermal barriers. The coating is inherently low-emissivity, and also resists condensation and abrasion. The technology is initially designed for single-pane windows, but can be expanded in the future for use in double-pane windows, doors, and roofs, as well as potential applications in the automobile, aerospace, and military industries.

University of California, San Diego

Production of Large-Sized LOCH Parts

The University of California, San Diego (UC San Diego) will develop a scalable process for the production of large (up to 500 lb.) pre-cast blocks using lean-organic compacted hybrid (LOCH), a new type of infrastructural material which may compete with traditional portland cement. Portland cement is the most common cement type and one of the most versatile construction materials in the world. Its widespread use over the last century is due to its low cost, abundance of its ingredients including limestone and shales, and standard performance characteristics. However, the production of portland cement involves heating the raw materials to high temperatures, which is an energy intensive process. It also contributes to greenhouse gas emissions by producing nearly one ton of CO2 for every ton of cement. The UC San Diego team proposes LOCH as a cheaper, more durable, energy efficient alternative to portland cement. LOCH is not formed through hydration like traditional cement, but rather uses a polymer binder to bond raw sand or soil grains together. This method uses only the minimal amount of binder content, leading to low material costs. If implemented widely, LOCH could provide a drastic reduction in energy use and CO2 emissions as compared to portland cement, at a significant cost reduction. The 1-2 hour fast setting time of LOCH can simplify project management and further lower costs of construction logistics and labor. The construction procedure of LOCH does not require rebar, the steel mesh and bars used to reinforce traditional cement, eliminating their time consuming installation and repair operations. LOCH also promises increased strength, durability, and longer service life. Nearly 15% of portland cement is used for precast parts, standard cement parts pre-assembled offsite. The team will first target this precast market, as it provides the best opportunity to easily integrate and scale the new technology.

University of California, Santa Barbara

FRESCO: Frequency Stabilized Coherent Optical Low-energy Wavelength Division Multiplexing (WDM) DC Interconnects

The University of California-Santa Barbara will develop a low power, low-cost solution to overcome power and bandwidth scaling limitations facing hyperscale data centers and exponential growth in global data traffic. The FRESCO transceiver leverages advances in fundamental laser physics and photonic integration to enable terabit, coherent optical data transmission inside data centers through chip-scale spectrally pure and ultra-stable wavelength division multiplexed laser light sources . The project outcome will be an integrated photonic package capable of connecting to 100 terabit-per-second networking switches over coherent optical short-reach data center fiber links. This effort could transform the way data centers, data center interconnects, and terabit Ethernet switches are built, drastically reducing their global energy consumption.

University of California, Santa Barbara

High Efficiency Quantum-Dot Photonic Integrated Circuit Technology Epitaxially Grown on Silicon

The University of California, Santa Barbara (UCSB) will develop a new technology for optical communication links. Optical interconnects transfer data by carrying light through optical fibers, and offer higher bandwidths than copper with higher efficiency and, consequently, reduced heat losses. However, short-reach optical interconnects are not widely used because of their higher costs and larger device footprints. Production costs of these interconnects could be reduced by using silicon-based fabrication technologies, but silicon is not suited for fabricating lasers, a key ingredient. In contrast III-V semiconductors, are well-suited for fabricating highly efficient lasers, but at a high cost. The team plans to combine these components to create III-V lasers, grown on a silicon substrate, harnessing both the low cost of silicon and the superior laser of the III-V semiconductor. However, growing the III-V laser material directly on silicon is difficult due to incompatibilities in their crystal structures. The team aims to overcome this challenge by implementing nanostructures called "quantum dots" as the light producing material and by growing the structure on patterned silicon substrates to help contain potential defects.


Subscribe to Efficiency