Sorry, you need to enable JavaScript to visit this website.

Electrical Efficiency

Fairfield Crystal Technology, LLC

High-Quality, Low-Cost GaN Single Crystal Substrates for High-Power Devices

Fairfield Crystal Technology will develop a new technique to accelerate the growth of gallium nitride (GaN) single-crystal boules. A boule is a large crystal that is cut into wafers and polished to provide a surface, or substrate, suitable for fabricating a semiconductor device. Fairfield Crystal Technology's unique boule-growth technique will rapidly produce superior-quality GaN crystal boules-overcoming the quality and growth-rate barriers typically associated with conventional growth techniques, including the current state-of-the-art hydride vapor phase epitaxy technique, and helping to significantly reduce manufacturing costs.

General Electric

Nanostructured Scalable Thick-Film Magnetics

Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. GE is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.

General Electric

Charge-Balanced SiC FETs for Breakthrough Power Conversion

The team led by GE Global Research (GE) will develop a new high-voltage, solid-state Silicon Carbide (SiC) Field-Effect Transistor (FET) charge-balanced device, also known as a "Superjunction." These devices have become the industry norm in high-voltage Silicon switching devices, because they allow for more efficient switching at higher voltages and frequencies. The team proposes to demonstrate charge balanced SiC devices for the first time. Their approach will offer scaling up to 15kV while reducing losses for power conversion applications by 10x when compared with existing silicon bipolar devices and competing SiC approaches. This will enable highly efficient, medium-voltage, multi-megawatt power conversion for conventional and renewable energy applications. The technology could dramatically reduce energy consumption and emissions for applications such as solar, wind, mining, oil and gas development, and medical devices. If these efficient devices were widely adopted the technology could save enough energy to power 5.9 million homes annually. It can also have a significant impact on medium voltage drives for high-speed motors and transportation applications, including hybrid and electric vehicles. In rail applications, the higher voltage and higher frequencies afforded by SiC devices could reduce the total energy consumption by as much as 30%.

GeneSiC Semiconductor

Silicon Carbide Anode Switched Thyristor for Medium-Voltage Power Conversion

GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and the electronic devices they are used in. GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

Georgia Tech Research Corporation

Highly Laminated, High-Saturation-Flux-Density Magnetic Cores for On-Chip Inductors in Power Converter Applications

Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into usable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

Georgia Tech Research Corporation

Dynamic Control of Grid Assets Using Direct AC Converter Cells

Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

Grid Logic, Inc.

Development of a New Generation High-Temperature Superconducting Composite Conductor Delivered at $20/(kA m) with Low AC Loss

Grid Logic is developing a new type of electrical superconductor that could significantly improve the performance (in $/kA-m) and lower the cost of high-power energy generation, transmission, and distribution. Grid Logic is using a new manufacturing technique to coat very fine particles of superconducting material with an extremely thin layer-less than 1/1,000 the width of a human hair-of a low-cost metal composite. This new manufacturing process is not only much simpler and more cost effective than the process used to make today's state-of-the-art high-power superconductors, but also it makes superconductive cables easier to handle and improves their electrical properties in certain applications.

Grid Logic, Inc.

Production of Nanostructured Core/Shell Powders for Exchange Spring Magnet Applications

The Grid Logic team is adapting a form of vapor deposition technology to demonstrate a new approach to creating powerful hybrid magnets. This "physical vapor deposition particle encapsulation technology" utilizes an inert atmosphere chamber, which allows for precisely controlled and reproducible pressure, gas flow, and fluidization conditions for a powder vessel. The team will use this specialized chamber to fabricate nanostructured exchange-spring magnets, which require careful control of material dimension and composition. Nanostructured exchange-spring magnets are composite magnetic materials that use an exchange between soft magnetic materials, which have high saturation magnetization but are easily demagnetized, and hard magnetic materials that are difficult to demagnetize but have lower saturation magnetization and high coercivity. In this case, the team will create magnets consisting of Manganese Bismuth (MnBi) hard magnetic core particles with nanometer-scale Cobalt (Co) soft magnet shells. If successful, the team will demonstrate a process for producing: 1) A hard magnet core particle capable of withstanding a strong external magnetic field without becoming demagnetized; and 2) A soft magnet shell providing high magnetic saturation (i.e. maximum magnetization due to an external magnetic field). By combining precise control of nano-scale layering, material ratios, and material interfaces the project could develop a magnet that rivals permanent magnets made from rare earth elements. As an ARPA-E IDEAS project, this early stage research will provide proof of concept showing that the particle encapsulation system developed in this project can enable large-scale, cost-efficient production of composite magnets that do not require rare earth elements.

Harvard University

Transistor-less Power Supply Technology Based on UWBG Nonlinear Transmission Line

Harvard University in partnership with Sandia National Laboratories will develop a transistor-less 16kW DC to DC converter boosting a 0.5kV DC input to 8kV that is scalable to 100kW. If successful, the transistor-less DC to DC converter could improve the performance of power electronics for electric vehicles, commercial power supplies, renewable energy systems, grid operations, and other applications. Converting DC to DC is a two-step process that traditionally uses fast-switching transistors to convert a DC input to an AC signal before the signal is rectified to a DC output. The Harvard and Sandia team will improve the process by replacing the active, fast-switching transistors with a slow switch followed by a passive, nonlinear transmission line (NLTL). The NLTL is a ladder network of passive components (inductors and diodes) that provide a nonlinear output with voltage. The combination of the nonlinear behavior with dispersion converts a quasi-DC input into a series of sharper and taller (amplified) voltage pulses called solitons, thus executing the DC to AC conversion without the use of active, fast-switching transistors. The NLTL will be followed by a high breakdown voltage silicon carbide and/or gallium nitride diode-based accumulator that converts the series of solitons to a DC output. Replacing the fast-switching transistors with a slow switch and a NLTL addresses the cost, size, efficiency, and reliability issues associated with fast switching based converters. Diodes also cost less and last longer because they are simpler structures than transistors and use no dielectrics. Efficiency, cost, and reliability improvements provided by a NLTL-based power converter will drastically benefit commercial power supplies, industrial motors, electric vehicles, data centers, the electric grid, and renewable electric power generation such as solar and wind.

HRL Laboratories, LLC

Gallium-Nitride Switch Technology for Bi-Directional Battery-to-Grid Charger Applications

HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

HRL Laboratories, LLC

Low-Cost Gallium Nitride Vertical Transistor

HRL will develop a high-performance, low-cost, vertical gallium nitride (GaN) transistor that could displace the silicon transistor technologies used in most high-power switching applications today. GaN transistors can operate at higher temperatures, voltages, and currents than their silicon counterparts, but they are expensive to manufacture. HRL will combine innovations in semiconductor material growth, device fabrication, and circuit design to create its high-performance GaN vertical transistor at a competitive manufacturing cost.

iBeam Materials, Inc.

GaN LEDs on Flexible Metal Foils

iBeam Materials is developing a scalable manufacturing method to produce low-cost gallium nitride (GaN) LED devices for use in solid-state lighting. iBeam Materials uses an ion-beam crystal-aligning process to create single-crystal-like templates on arbitrary substrates thereby eliminating the need for small rigid single-crystal substrates. This process is inexpensive, high-output, and allows for large-area deposition in particular on flexible metal foils. In using flexible substrates, in contrast to rigid single-crystal wafers, the ion-aligning process also enables roll-to-roll (R2R) processing of crystalline films. R2R processing in turn simplifies manufacturing scale-up by reducing equipment footprint and associated labor costs By fabricating the LED directly on a metal substrate, one "pre-packages" the LED with the reflector and the heat sink built-in. This significantly reduces cost, simplifies packaging and allows a pick-and-place (P&P) technology to be replaced with printing of LEDs.

IBM T. J. Watson Research Center

Multi-Wavelength Optical Transceivers Integrated on Node 

IBM T.J. Watson Research Center will develop a two-pronged approach to improve future datacenter efficiency.. New optical interconnect solutions can provide a path to energy-efficient datacenters at higher bandwidth levels, but they must also meet key metrics including power density, cost, latency, reliability, and signal integrity. IBM's team will use their expertise with vertical-cavity surface-emitting lasers (VCSELs) to develop VCSEL-based optical interconnect technology capable of meeting the necessary future demands. VCSEL-based interconnects offer an appealing combination of low power consumption, small size, high performance, low cost, and manufacturability. The team will work to increase the operating speed of VCSELs, detectors, and the associated circuits, while also developing packaging solutions to install optical interconnects on the integrated circuit. This integration will allow the system to eliminate the traditional driver and receiver electronics of most board-mounted optical modules, greatly reducing the cost and energy use of data transfer. The team will eventually use single-ended signaling to drive and receive signals from the modules directly, increasing the bandwidth of the system chips by at least two times and improving power efficiencies across the datacenter.

IBM T. J. Watson Research Center

Optical Network using Rapid Amplified Multi-wavelength Photonic Switches (ONRAMPS)

The IBM T.J. Watson Research Center will develop datacenter networking technology incorporating extremely fast switching devices that operate on the nanosecond scale. At the heart of the process is the development of a new type of photonic switch. The dominant switching technology today are electronic switches that toggle connections between two wires, each wire providing a different communication channel. A photonic switch toggles connections between two optical fibers, where each individual fiber themselves can carry many communication channels allowing immense numbers of data transfers. Previously, photonic (or optical) switches exhibited slow switching speeds and were difficult to manufacture in high volumes, which limited their usage. IBM's photonic switches can switch quickly, similar to electronic switches, and can be fabricated using the same tools and procedures used to manufacture today's most complex microprocessors. Because each optical port carries significantly more data than their electronic counterparts, fewer ports are needed to route the same amount of data. The technology also saves time and energy because employing direct optical switching can reduce the number of times the signal needs to be converted back and forth from the electrical to optical domain and vice versa. Datacenter efficiency (including computing, memory, and communication) can be significantly improved by using photonic switches to develop new networks capable of exploiting these improvements.

Illinois Institute of Technology

Wide Bandgap Solid State Circuit Breakers for AC and DC Microgrids

Imagen Energy LLC

1200 V SiC Based Extremely Compact, 500 kW, 2000 Hz Inverter for High Speed Permanent Magnet Synchronous Machine (PMSM) Applications

JR2J, LLC

Laser Spike Anneal Technology for the Activation of Implanted Dopants in Gallium Nitride

Kyma Technologies, Inc.

Transformational GaN Substrate Technology

Kyma will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed's structural quality and improving its purity.

Marquette University

Advanced Parallel Resonant 1MHz, 1MW, Three Phase AC to DC Ultra Fast EV Charger

Massachusetts Institute of Technology

Advanced Technologies for Integrated Power Electronics

MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

Pages

Subscribe to Electrical Efficiency