Sorry, you need to enable JavaScript to visit this website.

Electricity Generation and Delivery

Agile Delivery of Electrical Power Technology

In today's increasingly electrified world, power conversion--the process of converting electricity between different currents, voltage levels, and frequencies--forms a vital link between the electronic devices we use every day and the sources of power required to run them. The projects that make up ARPA-E's ADEPT program, short for "Agile Delivery of Electrical Power Technology," are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.
For a detailed technical overview about this program, please click here.  

Accelerating Low-Cost Plasma Heating and Assembly

Fusion energy holds the promise of cheap, clean power production, but up to now scientists have been unable to successfully harness fusion as a power source due to complex scientific and technological challenges and the high cost of research. ARPA-E's ALPHA program seeks to create and demonstrate tools to aid in the development of new, lower-cost pathways to fusion power and to enable more rapid progress in fusion research and development.
For a detailed technical overview about this program, please click here.  

Advanced Management and Protection of Energy Storage Devices

The projects that comprise ARPA-E's AMPED Program, short for "Advanced Management and Protection of Energy Storage Devices," seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
For a detailed technical overview about this program, please click here.  

Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage

Methods for storing electricity for the electric power system (i.e. the grid) are developing rapidly, but widespread adoption of these technologies requires real-world data about their performance, economic benefit, and long-term reliability. The CHARGES program, short for "Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage," establishes two sites where ARPA-E-funded battery technologies will be tested under conditions designed to represent not just today's applications, but also the demands of tomorrow's electric power system. The program will establish realistic duty cycles for storage devices on a microgrid, and test them in both a controlled environment and under realistic microgrid operating conditions. The objective of the CHARGES program is to accelerate the commercialization of electrochemical energy storage systems developed in current and past ARPA-E-funded research efforts. The program aims to help ARPA-E-funded battery development teams improve their storage technologies to deliver substantial economic benefit under real-world conditions, both now and in the future.
For a detailed technical overview about this program, please click here.    

Duration Addition to electricitY Storage

The projects that comprise ARPA-E's DAYS (Duration Addition to electricitY Storage) program will develop energy storage systems that provide power to the electric grid for durations of 10 to approximately 100 hours, opening significant new opportunities to increase grid resilience and performance. Whereas most new energy storage systems today deliver power over limited durations, for example to alleviate transmission congestion, stabilize voltage and frequency levels, or provide intra-day shifts of energy, the extended discharge times of DAYS projects will enable a new set of applications including long-lasting backup power and even greater integration of domestic, renewable energy resources.Project teams will seek to develop storage systems that are deployable in almost any location and charge and discharge electricity at a target fixed cost per cycle. Projects will fall into two categories: 1) DAYS systems that provide daily cycling in addition to longer duration, less frequent cycling and 2) DAYS systems that do not provide daily cycling, but can take over when daily cycling resources are either filled or depleted. DAYS projects will explore a new design space in electricity storage that allows for strategic compromise of performance to achieve extremely low costs. The program also seeks to establish new paradigms for increasing stored energy and extending duration of stationary electricity storage systems.
For a detailed technical overview about this program, please click here.  

Full-Spectrum Optimized Conversion and Utilization of Sunlight

High utilization of renewable energy is a vital component of our energy portfolio. Solar energy systems can provide secure energy with predictable future costs--largely unaffected by geopolitics and climate--because sunshine is widely available and free. The projects that comprise ARPA-E's FOCUS program, short for "Full-Spectrum Optimized Conversion and Utilization of Sunlight," could pave the way for cost-competitive hybrid solar energy systems that combine the advantages of existing photovoltaic (PV) and concentrated solar power (CSP) technologies.
For a detailed technical overview about this program, please click here.  

Green Electricity Network Integration

The projects in ARPA-E's GENI program, short for "Green Electricity Network Integration," aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.
For a detailed technical overview about this program, please click here.

Generators for Small Electrical and Thermal Systems

The GENSETS program aims to develop transformative generator technologies to enable widespread deployment of residential combined heat and power (CHP) systems. These small, natural gas-fueled systems can fulfill most of a US household's electricity and hot water needs, and if widely used could increase the overall efficiency of power generation in the US, and reduce greenhouse gas emissions.
For a detailed technical overview about this program, please click here.  

Generating Realistic Information for the Development of Distribution and Transmission Algorithms

The Generating Realistic Information for the Development of Distribution and Transmission Algorithms (GRID DATA) program will fund the development of large-scale, realistic, validated, and open-access power system network models. These models will have the detail required to allow the successful development and testing of transformational power system optimization and control algorithms, including new Optimal Power Flow (OPF) algorithms. Project teams will take one of two tracks to develop models. The first option is to partner with a utility to collect and then anonymize real data as the basis for a model that can be released publically. The second approach is to construct purely synthetic power system models. The program will also fund the creation of an open-access, self-sustaining repository for the storage, annotation, and curation of these power systems models, as well as others generated by the community.
For a detailed technical overview about this program, please click here.

Grid-Scale Rampable Intermittent Dispatchable Storage

The projects that comprise ARPA-E's GRIDS program, short for "Grid-Scale Rampable Intermittent Dispatchable Storage," are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.
For a detailed technical overview about this program, please click here.  

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
  For a detailed technical overview about this program, please click here.  

Innovative Development in Energy-Related Applied Science

The IDEAS program - short for Innovative Development in Energy-Related Applied Science - provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS awards may also support proof-of-concept research to develop a unique technology concept, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. This program identifies potentially disruptive concepts in energy-related technologies that challenge the status quo and represent a leap beyond today's technology. That said, an innovative concept alone is not enough. IDEAS projects must also represent a fundamentally new paradigm in energy technology and have the potential to significantly impact ARPA-E's mission areas.

Micro-scale Optimized Solar-cell Arrays with Integrated Concentration

ARPA-E's MOSAIC program seeks to develop technologies and concepts that will lower the cost of solar photovoltaic (PV) power systems and improve their performance. Project teams will develop micro-scale concentrated photovoltaic systems (CPV) that are similar in cost and size to conventional solar PV systems, but with greatly increased performance levels. Multidisciplinary teams will leverage expertise in conventional flat-plate PV, CPV, manufacturing, optical engineering, and material science to produce a new class of PV panels. If successful, these technologies could facilitate cost-effective deployment of solar power systems across a wide range of geographical locations, lowering U.S. greenhouse gas emissions and reducing dependence on imported energy.
 For a detailed technical overview about this program, please click here.  

Network Optimized Distributed Energy Systems

The Network Optimized Distributed Energy Systems (NODES) Program aspires to enable renewables penetration at the 50% level or greater, by developing transformational grid management and control methods to create a virtual energy storage system based on use of flexible load and distributed energy resources (DERs). The challenge is to cost-effectively and reliably manage dynamic changes in the grid by leveraging these additional grid resources, while maintaining customer quality of service. The expected benefits include reduced periods of costly peak demand, reduced energy waste and increased penetration of renewable energy production. The NODES Program will bring together different scientific communities such as power systems, control systems, computer science, and distributed systems to accelerate the development of new technologies enabling active control of load and DERs in coordination with the grid.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments. In response to ARPA-E's first open solicitation, more than 3,700 concept papers flooded into the new agency, which were thoroughly reviewed by a team of 500 scientists and engineers in just 6 months. In the end, 36 projects were selected as ARPA-E's first award recipients, receiving $176 million in federal funding.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind, solar, tidal and distributed generation, grid scale storage, power electronics, power grid system performance, vehicle efficiency, storage for electric vehicles, and alternative fuels and bio-energy.
For a detailed technical overview about this program, please click here.

Reliable Electricity Based on ELectrochemical Systems

Fuel cell technologies have been touted for decades due to their high chemical-to-electrical conversion efficiencies and potential for near-zero greenhouse gas emissions. Fuel cell technologies for power generation have not achieved widespread adoption, however, due primarily to their high cost relative to more established combustion technologies. There is a critical need to develop fuel cell technologies that can enable distributed power generation at low cost and high performance. The projects that comprise ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program include transformational fuel cell devices that operate in an intermediate temperature range in an attempt to create new pathways to achieve an installed cost to the end-user of less than $1,500/kW at moderate production volumes and create new fuel cell functionality that will help increase grid stability and integration of renewable energy technologies such as wind and solar.
For a detailed technical overview about this program, please click here.  

Solar Agile Delivery of Electrical Power Technology

The projects that make up ARPA-E's Solar ADEPT program, short for "Solar Agile Delivery of Electrical Power Technology," aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.
For a detailed technical overview about this program, please click here.  

1366 Technologies, Inc.

Direct Wafer: Enabling Terawatt Photovoltaics

1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020--from $0.15 per kilowatt hour to less than $0.07. 1366's process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today's state-of-the-art technologies. 1366's wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366's technology, the cost of silicon wafers could be reduced by 80%.

Pages

Subscribe to Electricity Generation and Delivery