Sorry, you need to enable JavaScript to visit this website.

Electricity Generation and Delivery

University of California, Los Angeles

Thermal Energy Storage With Supercritical Fluids

The University of California, Los Angeles (UCLA) and NASA's Jet Propulsion Laboratory (JPL) are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team's design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

University of California, Los Angeles

Fuel Cells with Dynamic Response Capability Based on Energy Storage Electrodes with Catalytic Function

The University of California, Los Angeles (UCLA) is developing a low-cost, intermediate-temperature fuel cell that will also function like a battery to increase load-following capability. The fuel cell will use new metal-oxide electrode materials--inspired by the proton channels found in biological systems--that offer superior energy storage capacity and cycling stability, making it ideal for distributed generation systems. UCLA's new materials also have high catalytic activity, which will lower the cost of the overall system. Success of this project will enable a rapid commercialization of multi-functional fuel cells for broad applications where reliable distributed generations are needed.

University of California, Los Angeles

SHOTEAM: Superalloy Heat exchangers Optimized for Temperature Extremes and Additive Manufacturability

University of California, San Diego

Distributed Grid Control of Flexible Loads and DERs for Optimized Provision of Synthetic Regulation Reserves 

The University of California, San Diego (UC San Diego) will develop coordination algorithms and software using intelligent control and optimization for flexible load and DERs to provide reliable frequency regulation services for the bulk power grid. The project will develop a multi-layer framework for larger-scale energy aggregators to act on behalf of their smaller-sized customers to help respond to incoming requests from regional transmission operators. The team will develop approaches that aggregators can use to quantify reserves, system objectives and constraints, customer usage patterns, and generation forecasts. Aggregators will use distributed coordination algorithms to rapidly respond to operators while considering network constraints and quality of services for customers. The UC San Diego technology to manage flexible loads and DERs offers economic and operational advantages for utilities, operators and customers.

University of California, San Diego

Advanced Energy Storage Modeling, Performance Evaluation and Testing

The University of California, San Diego (UC San Diego) will conduct testing of existing ARPA-E energy storage technologies in both laboratory and grid-connected conditions. Home to one of the country's largest microgrids, UC San Diego will apply its advanced understanding of microgrid operation in the California market to select and value applications for storage, in grid-connected and islanded conditions, and to develop duty cycles for energy storage in order to serve individual and stacked applications. UC San Diego plans to test cells and modules from ARPA-E-funded battery developers in its battery laboratories, and UC San Diego experts will assist ARPA-E battery developers in resolving issues and enhancing performance. Those batteries that perform well in laboratory testing using the selected duty cycles will then be deployed for extended testing on UC San Diego's microgrid. This approach will allow UC San Diego to achieve test results that represent a wide spectrum of applications, determine system performance under a variety of conditions, and eventually generate initial performance data that can be shared with electric utilities and other potential grid storage buyers to inform them of the promise of early-stage storage technologies.

University of California, San Diego

Low-cost, Easy-to-integrate, and Reliable Grid Energy Storage System with 2nd Life Lithium Batteries

University of California, San Diego

Self-Forming Solid-State Batteries

The University of California, San Diego (UC San Diego), in partnership with Liox Power and the University of Maryland, will develop a self-forming, high temperature solid-state lithium battery that solves the critical cost and performance problems impeding commercialization of solid-state batteries for electric vehicles. The battery will possess a very long life due to a chemical mechanism that repairs cycling damage automatically. This self-healing electrolyte will also limit the growth of dendrites. Dendrites are branchlike metal fibers that can grow to span the space between the negative and positive electrodes, thereby causing a short circuit. The team plans to reduce costs by designing a manufacturing process for forming solid-state electrolytes and cathodes in a single step by depositing a graded lithium/phosphorous/sulfur composite material as both the cathode and electrolyte. In theory, this composition should be able to remove any deformations due to dendrite formation by a simple thermal cycling process. A non-flammable polymer used within this composite will both add structural strength and eliminate the need for flammable liquid electrolytes. The team projects that the battery will cost half of current lithium-ion batteries while doubling the energy density.

University of California, Santa Cruz

Adiabatic Waveguide Coupler for High-Power Solar Energy Collection and Transmission

The University of California, Santa Cruz (UC Santa Cruz) is developing an optical device that enables the use of concentrated solar energy at locations remote to the point of collection. Conventional solar concentration systems typically use line of sight optical components to concentrate solar energy onto a surface for direct conversion of light into electricity or heat. UC Santa Cruz's innovative approach leverages unique thin-film materials, processes, and structures to build a device that will efficiently guide sunlight into an optical fiber for use away from the point of collection. UC Santa Cruz's optical device improves the coupling of high-power, concentrated solar energy systems into fiber-optic cables for use in applications such as thermal storage, photovoltaic conversion, or solar lighting.

University of Colorado, Boulder

Anion Channel Membranes

The University of Colorado, Boulder (CU-Boulder) will develop a new type of anion-exchange membrane for chloride (Cl-) transport that is based on a nanoporous lyotropic liquid crystal structure that minimizes cation crossover by molecular size-exclusion and charge exclusion. Due to a lack of suitable Cl- conducting membranes, flow batteries often use microporous membranes or cation-exchange membranes (CEM) to separate the two electrode chambers. Microporous membranes are inexpensive, but do not provide perfect barriers to intermixing of the reactants (or "crossover") that reduces the battery's efficiency and, in some cases, damages critical components. In contrast, CEMs such as Nafion provide better isolation but are far more expensive, and also permit the migration of water and protons which can change the pH (acidity) and lead to inefficiencies and undesired side reactions in the battery. This project aims to develop a low-cost separator that eliminates crossover in all-iron flow batteries. The membrane allows for ion transport via nanochannels, which are engineered to have sizes below those of common hydrated cations, thus exhibiting perfect cation rejection. In the all-iron battery, key benefits of reduced crossover include increased roundtrip efficiency as well as the reduction of pH swings and water transport, and hence the reduction or elimination of the rebalancing stacks and system management schemes. In the future, the membrane developed in this project could also be used with other lower cost redox couples, including those using two different elements as active species. The low cost, increased efficiency, and long lifetime of these membranes have the potential to significantly increase the economic viability of flow batteries.

University of Delaware

High-Voltage and Low-Crossover Redox Flow Batteries for Economical and Efficient Renewable Electricity Storage

The University of Delaware (UD) is developing a low-cost flow battery that uses membrane technology to increase voltage and energy storage capacity. Flow batteries store chemical energy in external tanks instead of within the battery container, which allows for cost-effective scalability because adding storage capacity is as simple as expanding the tank, offering large-scale storage capacity for renewable energy sources. However, traditional flow batteries have limited cell voltages, which lead to low power and low energy density. UD is addressing this limitation by adding an additional exchange membrane within the electrolyte material of the battery, creating 3 separate compartments of electrolytes. Separating the electrolytes in this manner allows unprecedented freedom for the battery to exchange ions back and forth between the positive and negative end of the battery, which improves the voltage of the system.

University of Delaware

Highly Conductive, Stable and Robust Hydroxide Exchange Membranes Based on Polyaryl piperidinium

The University of Delaware (UD) with their project partners will develop a new class of hydroxide exchange membranes (HEMs) for use in electrochemical devices such as fuel cells. Hydroxide exchange membrane fuel cells (HEMFC), in contrast to PEM fuel cells, can use catalysts based on low-cost metals as well as inexpensive membranes and bipolar plates. However, a low-cost HEM that simultaneously possesses adequate ion conductivity, chemical stability, and mechanical robustness does not yet exist. To address this challenge, the team has developed a family of poly(aryl piperidinium) HEMs that are highly hydroxide conductive, chemically stable, and mechanically robust. These polymers will be designed to provide unprecedented chemical stability, while simultaneously enabling high ion-exchange capacities and low swelling ratios, and mechanical robustness. A major part of the team's project will focus on enhancing the mechanical robustness of HEMs under different levels of humidity. The feasibility of roll-to-roll membrane production will be determined as part of the commercialization efforts. The proposed HEMs have the potential to make hydrogen fuel cell vehicles economically competitive with gasoline-powered vehicles. 

University of Illinois, Urbana Champaign

Enabling Load Following Capability in the Transatomic Power MSR

The University of Illinois, Urbana-Champaign (UIUC) will develop a fuel processing system that enables load-following in molten salt reactors (MSRs), an important ability that allows nuclear power plants to ramp electricity production up or down to meet changing electricity demand. Nuclear reactions in MSRs produce unwanted byproducts (such as xenon and krypton) that can adversely affect power production. In steady, baseload operation, these byproducts form and decay at the same rate. When electricity production is ramped down, however, the byproducts start to be produced at a greater rate than they decay, leading to a buildup within the reactor. When power production must be once again increased, the response rate is slowed by the time needed for the byproducts to reach their equilibrium level (determined by the radioactive decay half-life, which is on the order of hours). Thus, buildup of these unwanted byproducts resulting from ramping down inhibit proper load following for molten salt reactors. Fortunately, MSRs transport fuel in a flowing molten salt fuel loop, which means that a section of the reactor, outside the core, can be leveraged for fuel processing and "cleanup." The team will determine the feasibility of removal of these unwanted byproducts and design a fuel reprocessing system, removing a major barrier to commercialization for molten salt reactors.

University of Illinois, Urbana Champaign

Cyber-Physical Modeling and Analysis for a Smart and Resilient Grid

The University of Illinois, Urbana-Champaign (UIUC) is developing scalable grid modeling, monitoring, and analysis tools that would improve its resiliency to system failures as well as cyber attacks, which can significantly improve the reliability of grid operations. Power system operators today lack the ability to assess the grid's reliability with respect to potential cyber failures and attacks. UIUC is using theoretical and practical techniques from both the cyber security and power engineering domains to develop new algorithms and software tools capable of analyzing real-world threats against power grid critical infrastructures including cyber components (e.g. communication networks), physical components (e.g. power lines), and interdependencies between the two in its models and simulations.Continuing the project work started by UIUC, Avista Utilities is now developing technology to automatically extract and map electrical switch information to generate cyber-physical models. These cyber-physical models can be used to identify network vulnerabilities as well as identify and prioritize critical assets which will allow utilities and others to conduct simulations, perform analysis, and fortify networks against cyber-attacks.

University of Illinois, Urbana Champaign

Synthetic Data for Power Grid R&D

The University of Illinois, Urbana-Champaign (UIUC), with partners from Cornell University, Virginia Commonwealth University, and Arizona State University will develop a set of entirely synthetic electric transmission system models. Their 10 open-source system models and associated scenarios will match the complexity of the actual power grid. By utilizing statistics derived from real data, the team's models will have coordinates based on North American geography with network structure, characteristics, and consumer demand that mimics real grid profiles. Smaller models will be based on smaller areas, such as part of a U.S. state, while the large models will cover much of the continent. All models and their scenarios will be validated using security-constrained optimal power flows, with parameters tuned to emulate the statistical characteristics of actual transmission system models.

University of Maryland

Additively Manufactured High Efficiency and Low-Cost sCO2 Heat Exchangers

The University of Maryland will design, manufacture, and test high-performance, compact heat exchangers for supercritical CO2 power cycles. Two innovative additive manufacturing processes will enable high performance. One facilitates up to 100 times higher deposition rate compared with regular laser powder additive manufacturing. The other enables crack-free additive manufacturing of an advanced nickel-based superalloy and has the potential to print features as fine as 20 micrometers. These developments could halve the fabrication cost and enable heat exchanger operations above 800°C (1472°F) and 80 bar (1160 psi). These systems could be applied to high-efficiency fossil energy, concentrating solar power, and small modular nuclear energy.

University of Maryland

Highly Conductive, Robust, Corrosion-Resistant Nanocarbon Current Collectors for Aqueous Batteries

The University of Maryland (UMD) will develop a new type of current collector using a film that is composed of functionalized few-walled carbon nanotubes (FWNTs) and polymers. The team seeks to develop a thin, low-cost current collector that displays high conductivity, excellent mechanical strength, flexibility, and manufacturing scalability. Carbon nanotubes have high conductivity, but in their pure state lack the needed mechanical strength. The FWNT concept will "functionalize" or bolster the outer walls by integrating polymers to increase the mechanical strength. This will give the product the dual benefits of direct tube-on-tube contact for fast recharging and increased mechanical strength and stability from the polymers. Replacement of metal mesh by FWNT-polymer film will not only address current collector corrosion concerns, but will also offer increased energy density due to the substantially lighter weight of these carbon-based materials compared to traditional metallic current collectors.

University of Michigan

Benchtop Growth of High Quality III-V Thin Film Photovoltaics through Electrochemical Liquid Phase Epitaxy (ec-LPE)

The University of Michigan is investigating a new, hybrid thin-film PV production technology that combines two different semiconductor production techniques: electrodeposition (the deposition of a substance on an electrode by the action of electricity) and epitaxial crystal growth (the growth of crystals of one substance on the crystal face of another substance). If successful, the University of Michigan's new hybrid approach would produce highly efficient (above 20%) gallium arsenide thin film solar cells using only simple process equipment, non-flammable precursor ingredients, and relatively low production temperatures (below 350 °C). This would radically decrease the production cost per watt of solar capacity, making it substantially less expensive and more competitive with other energy sources.

University of Michigan

Overcoming the Technical Challenges of Coordinating Distributed Load Resources at Scale

The University of Michigan will develop load-control strategies to improve grid reliability in the face of increased penetration of DERs and low-cost renewable generation. As the electricity generation mix changes to include more renewables and DERs, load shifting is essential. Today, there are few load-shifting strategies in use at grid scale that are capable of balancing current levels of intermittent energy production. The team will develop three testing environments to identify issues the grid faces with increased levels of energy from distributed and renewable generation. Their method could improve credibility for load-control mechanisms at scale and lower costs to power providers and consumers alike.

University of Michigan

High Fidelity, Year Long Power Network Data Sets for Replicable Power System Research

The University of Michigan, with partners from Los Alamos National Laboratory, the California Institute of Technology, and Columbia University, will develop a transmission system data set with greater reliability, size, and scope compared to current models. The project combines existing power systems data with advanced obfuscation techniques to anonymize the data while still creating realistic models. In addition, the project delivers year-long test cases that capture grid network behavior over time, enabling the analysis of optimization algorithms over different time scales. These realistic datasets will be used to develop synthetic test cases to examine the scalability and robustness of optimization algorithms. The team is also developing a new format for capturing power system model data using JavaScript Object Notation and will provide open-source tools for data quality control and validation, format translation, synthetic test case generation, and obfuscation. Finally, the project aims at developing an infrastructure for ensuring replicable research and easing experimentation, using the concept of virtual machines to enable comparison of algorithms as hardware and software evolve over time.

University of Minnesota

Enabling the Grid of the Future

The University of Minnesota (UMN) will develop a comprehensive approach that addresses the challenges to system reliability and power quality presented by widespread renewable power generation. By developing techniques for both centralized cloud-based and distributed peer-to-peer networks, the proposed system will enable coordinated response of many local units to adjust consumption and generation of energy, satisfy physical constraints, and provide ancillary services requested by a grid operator. The project will apply concepts from nonlinear and robust control theory to design self-organizing power systems that effectively respond to the grid events and variability. A key feature enabled by the proposed methodology is a flexible plug-and-play architecture wherein devices and small power networks can easily engage or disengage from other power networks or the grid. The project's design approach will be tested across many different scenarios while using more than 100 actual physical devices such as photovoltaics, battery storage inverters, and home appliances.

Pages

Subscribe to Electricity Generation and Delivery