Sorry, you need to enable JavaScript to visit this website.

Electricity Generation and Delivery

Brayton Energy

1kW Recuperated Brayton-Cycle Engine Using Positive-Displacement Components

Brayton Energy will develop a 1 kW recuperated Brayton cycle engine to produce heat and electricity for residential use. To begin the cycle, compressed air is preheated in a recuperator before adding fuel, then the air-fuel mix is ignited in a combustion chamber. The high temperature exhaust gases then expand through the turbine, providing some of the work that drives the compressor and also produces electricity in a generator. Major project innovations include the use of a rotary screw-type compressor and expander that operate in a sub-atmospheric Brayton cycle i.e. below atmospheric pressure. In addition, Brayton will also use their innovative patented recuperator that is currently in production, and an ultra-low emission combustor.

Brown University

Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems

Brown University is developing a power conversion device to maximize power production and reduce costs to capture energy from flowing water in rivers and tidal basins. Conventional methods to harness energy from these water resources face a number of challenges, including the costs associated with developing customized turbine technology to a specific site. Additionally, sites with sufficient energy exist near coastal habitats which depend on the natural water flow to transport nutrients. Brown University's tidal power conversion devices can continuously customize themselves by using an onboard computer and control software to respond to real-time measurements, which will increase tidal power conversion efficiency. Brown University's technology will allow for inexpensive installation and software upgrades and optimized layout of tidal power generators to maximize power generation and mitigate environmental impacts.

California Institute of Technology

Prototype Tools to Establish the Viability of the Adiabatic Heating and Compression Mechanisms Required for Magnetized Target Fusion

Caltech, in coordination with Los Alamos National Laboratory (LANL), will investigate the scaling of adiabatic heating of plasma by propelling magnetized plasma jets into stationary heavy gases and/or metal walls. This is the reverse of the process that would occur in an actual fusion reactor - where a gas or metal liner would compress the plasma - but will provide experimental data to assess the magneto-inertial fusion approach. By using this alternative frame of reference, the researchers will be able to conduct experiments more frequently and at a lower cost because the experimental setup is non-destructive. The team will investigate the jet-target collision using many experiments with a wide range of parameters to determine the actual equation of state relating compression, change in magnetic field, and temperature increase. The experimental work will be supplemented with advanced 3D computer models. If successful, these results will show that compressional heating by a liner is a viable method for increasing temperatures to the levels required for magneto-inertial fusion. The study will also provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio.

California Institute of Technology

Optics for Full Spectrum, Ultrahigh Efficiency Solar Energy Conversion

The California Institute of Technology (Caltech) is developing a solar module that splits sunlight into individual color bands to improve the efficiency of solar electricity generation. For PV to maintain momentum in the marketplace, the energy conversion efficiency must increase significantly to result in reduced power generation costs. Most conventional PV modules provide 15-20% energy conversion efficiency because their materials respond efficiently to only a narrow band of color in the sun's spectrum, which represents a significant constraint on their efficiency. To increase the light conversion efficiency, Caltech will assemble a solar module that includes several cells containing several different absorbing materials, each tuned to a different color range of the sun's spectrum. Once light is separated into color bands, Caltech's tailored solar cells will match each separated color band to dramatically improve the overall efficiency of solar energy conversion. Caltech's approach to improve the efficiency of PV solar generation should enable improved cost-competitiveness for PV energy.

California Institute of Technology

Micro-Optical Tandem Luminescent Solar Concentrator

Researchers at the California Institute of Technology (Caltech) and their partners will design and fabricate a new CPV module with features that can capture both direct and diffuse sunlight. The team's approach uses a luminescent solar concentrator (LSC) sheet that includes quantum dots to capture and re-emit sunlight, micro-PV cells matched to the color of the light from the quantum dots, and a coating of advanced materials that enhance concentration and delivery of sunlight to the micro-PV cells. In addition, the light not captured by the quantum dots will impinge on a tandem solar cell beneath the LSC sheet. The design of the LSC will focus on lowering the number of expensive micro-PV cells needed within the concentrator sheet, which will reduce system costs, but still maintain high efficiency. The design will also allow the module to be effective without any tracking system, making it potentially attractive for all PV markets, including space-constrained rooftops.

California Institute of Technology

Scalable Real-Time Decentralized Volt/VAR Control

The California Institute of Technology (Caltech) is developing a distributed automation system that allows distributed generators--solar panels, wind farms, thermal co-generation systems--to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech's software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

Carnegie Mellon University

Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

Case Western Reserve University

High Energy Storage Capacity Low-Cost Iron Flow Battery

Case Western Reserve University is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today's cost. Ultimately, this technology could help reduce the cost of stationary energy storage enough to facilitate the adoption and deployment of renewable energy technology.

Citrine Informatics

A Machine Learning-Based Materials Discovery Paradigm Applied to Solid Ion Conductors

The Citrine Informatics team is demonstrating a proof-of-concept for a system that would use experimental work to intelligently guide the investigation of new solid ionic conductor materials. If successful, the project will create a new approach to material discovery generally and new direction for developing promising ionic conductors specifically. The project will aggregate data (both quantitative and meta-data related to experimental conditions) relevant to ionic conductors from the published literature and build advanced, machine learning models for prediction based upon the resulting large database. The team's system will also experimentally explore the new materials space identified and suggested by the models. The Citrine project could provide researchers near-real-time feedback as they perform experiments, allowing them to dynamically select the most promising research pathways. This would in turn unlock more rapid ionic conductor identification and development, and transform the fields of theoretical and experimental materials science at-large.

Cogenra Solar, Inc.

Double-Focus Hybrid Solar Energy System with Full Spectrum Utilization

Cogenra Solar is developing a hybrid solar converter with a specialized light-filtering mirror that splits sunlight by wavelength, allowing part of the sunlight spectrum to be converted directly to electricity with photovoltaics (PV), while the rest is captured and stored as heat. By integrating a light-filtering mirror that passes the visible part of the spectrum to a PV cell, the system captures and converts as much as possible of the photons into high-value electricity and concentrates the remaining light onto a thermal fluid, which can be stored and be used as needed. Cogenra's hybrid solar energy system also captures waste heat from the solar cells, providing an additional source of low-temperature heat. This hybrid converter could make more efficient use of the full solar spectrum and can provide inexpensive solar power on demand.

Colorado School of Mines

Low Cost Membrane Reactor Synthesis of Ammonia at Moderate Conditions 

The Colorado School of Mines will develop a membrane reactor concept to synthesize ammonia at ambient pressure. In traditional ammonia production processes, nitrogen (N2) and hydrogen (H2) compete for identical catalyst sites, and the presence of each inhibits the other, with the overall rate reflecting a compromise. The team proposes decoupling and independently controlling the N2 and H2 dissociation by dedicating one side of the composite membrane to each. In this way, the catalysts may be individually optimized. Highly effective catalysts have been previously demonstrated for H2 dissociation, and the team's focus will be on exploring early transition metals which have shown great promise as catalysts for N2 dissociation. When perfected, this technology will allow the production of ammonia at ambient pressure, reducing the scale and number of steps required in the process. This method is also an improvement over electrochemical processes, which have a more complicated design and reduced efficiency due to the need for an external voltage.

Colorado School of Mines

Low-Cost Intermediate-Temperature Fuel Flexible Protonic Ceramic Fuel Cell Stack

The Colorado School of Mines is developing a mixed proton and oxygen ion conducting electrolyte that will allow a fuel cell to operate at temperatures less than 500°C. By using a proton and oxygen ion electrolyte, the fuel cell stack is able to reduce coking - which clogs anodes with carbon deposits - and enhance the process of turning hydrocarbon fuels into hydrogen. Today's ceramic fuel cells are based on oxygen-ion conducting electrolytes and operate at high temperatures. Mines' advanced mixed proton and oxygen-ion conducting fuel cells will operate on lower temperatures, and have the capacity to run on hydrogen, ethanol, methanol, or methane, representing a drastic improvement over using only oxygen-ion conducting electrolytes. Additionally, the fuel cell will leverage a recently developed ceramic processing technique that decreases fuel cell manufacturing cost and complexity. Additionally, their technology will reduce the number of manufacturing steps from 15 to 3, drastically reducing the cost of distributed generation applications.

Colorado School of Mines

High Efficiency, Low Cost & Robust Hybrid SOFC/IC Engine Power Generator

The Colorado School of Mines will develop a hybrid power generation system that leverages a pressurized, intermediate-temperature solid oxide fuel cell (SOFC) stack and an advanced low-energy-content fuel internal combustion (IC) engine. The custom-designed, turbocharged IC engine will use the exhaust from the anode side of the SOFC as fuel and directly drive a specialized compressor-expander that supplies pressurized air to the fuel cell. High capital costs and poor durability have presented significant barriers to the widespread commercial adoption of SOFC technology. In part, these challenges have been associated with SOFC high operating temperatures of 750-1000°C (1382-1832°F). This team will use a robust, metal-supported SOFC (600°C or 1112°F) technology that will provide greater durability, better heat management, and superior sealing over standard ceramic-supported SOFC designs. The modified diesel IC engine in a hybrid system provides a low-cost, controllable solution to use the remaining chemical energy in the fuel cell exhaust. The system will use the hot air and exhaust gases it produces to keep components running at the proper temperatures to maximize overall efficiency. The team will also develop supporting equipment, including a specialized compressor-expander and power inverter. The new system has the potential to enable highly-efficient, cost-effective distributed power generation.

Colorado School of Mines

Hybrid Polyoxometalate Membranes for High Proton Conduction with Redox Ion Exclusion

The Colorado School of Mines will develop a new membrane for redox flow battery systems based on novel, low-cost materials. The membrane is a hybrid polymer that includes heteropoly acid molecules and a special purpose fluorocarbon-based synthetic rubber called a fluoroelastomer. The team will enhance the membrane's selectivity by refining the polymer structure, employing crosslinking techniques, and also through doping the polymer with cesium. The fluoroelastmer is commercially available, thereby contributing to a superior performance-to-cost ratio for the membrane. Flow battery experts at Lawrence Berkeley Laboratory will extensively test the selectivity, conductivity, and stability of the membranes developed in this project, and 3M will apply its decades of membrane fabrication experience to scale-up the new technology. If successfully developed, the separator in this project will increase efficiency and reduce cost in existing flow battery systems such as the all-iron redox flow battery.

Columbia University

Demonstration of Near-Field Thermophotovoltaic (TPV) Energy Generation

The Columbia University team is developing a proof-of-concept solid-state solution to generate electricity from high-temperature waste heat (~900 K) using thermal radiation between a hot object placed in extreme proximity (<100 nm) to a cooler photovoltaic (PV) cell. In this geometry, thermal radiation can be engineered such that its spectrum is quasi-monochromatic and aligned with the PV cell's bandgap frequency. In this case, it is estimated that electricity can be generated with a conversion efficiency beyond 25% and with a power density that could greatly outperform currently available thermal photovoltaic devices and other thermoelectric generator designs. To overcome the significant challenge of maintaining the proper distance between a hot side emitter and a cooler PV junction to prevent device shorting, the team will develop microelectromechanical actuation systems to optimally orient the PV cell. By providing a universal solid-state solution that can, in principle, be mounted and scaled to any hot surface, this technology could help retrieve a significant fraction of heat wasted by U.S. industries

Cornell University

GridControl: A Software Platform to Support the Smart Grid

Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud's data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell's GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

Cree Fayetteville, Inc.

Compact, High Voltage, High Energy Density Diamond Capacitors for Power Electronics Applications

Cree Fayetteville will develop high voltage (10kV), high energy density (30 J/cm3), high temperature (150 °C+) capacitors utilizing chemical vapor deposition (CVD) diamond capable of powering the next generation of high-performance power electronics systems. CVD diamond is a superior material for capacitors due to its strong electrical, mechanical, and materials qualities that are inherently stable over varying temperatures. It also has similar qualities of single crystal diamond without the high cost. Commercial CVD diamond deposition will be utilized to prove the feasibility of the technology with consistent, low cost, high-resistivity diamond films. The CVD diamond will be used as an optimal dielectric for today's demanding power electronics applications. Most power electronics systems require large capacitors to filter switching noise and provide sufficient energy to loads during transient periods. But present-day film and ceramic capacitor technologies are quickly becoming obsolete as the switching frequency and operating temperature of power electronic systems continue to increase. Using CVD diamond for this purpose may provide a capacitor technology that does not experience lifetime-limiting overheating, at both low frequency (high energy) and high frequency (low equivalent series resistance) conditions, and with reasonable size and cost. In conjunction with a robust electrode metallurgy and proven high-temperature packaging techniques, energy densities in excess of 80 J/cm3 have been modeled; the proposed specification of 30 J/cm3 will be a drastic improvement over current technologies. The team's effort will primarily focus on the development and characterization of multi-layer CVD diamond capacitor design, packaging, and fabrication techniques, resulting in proof of concept prototypes to demonstrate the technology feasibility.

Cree, Inc.

15 kV SiC IGBT Power Modules for Grid-Scale Power Conversion

Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.

Cree, Inc.

Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

Cree is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels--eliminating the need for large transformers. Transformers "step up" the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually "stepped down" to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Cree's new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Cree's modular devices are designed to ensure reliability--if one device fails it can be bypassed and the system can continue to run.

Cummins Corporate Research & Technology

Efficient Knock Suppression in Spark Ignited Engines

Cummins Corporate Research & Technology will develop an advanced high efficiency natural gas-fueled internal combustion engine for high-power distributed electricity generation. The team is seeking to achieve 55% brake thermal efficiency while maintaining low exhaust emissions. The enabling technology is wet compression, where fine droplets of water are sprayed directly into the engine cylinders, causing the charge temperature to drop and thereby prevent the onset of damaging engine knock at high compression ratios. Since it takes less energy to compress cooler air, the savings from reduced compression work can be passed on to increase the net engine output. Wet compression is a transformative technology that dramatically improves engine efficiency while still allowing for conventional engine manufacturing methods at existing facilities.

Pages

Subscribe to Electricity Generation and Delivery