Sorry, you need to enable JavaScript to visit this website.

Electricity Generation and Delivery

EaglePicher

Planar Sodium-Beta Batteries for Renewable Integration and Grid Applications

EaglePicher Technologies is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

Eaton Corporation

Synthetic Cloud-Based Regulation Reserve Distribution Management System (Secured)

Eaton will develop and validate a disruptive cloud-computing-based technology aimed at providing agile and robust synthetic regulating reserve services to the power grid. This approach separates the decision-making of synthetic regulating reserve services into two-levels to significantly reduce the computational complexity, thereby enabling large-scale coordinated control of a vast number of DERs and flexible load. The system-operator level estimates and predicts reserve capacity of the distribution network and decides on the appropriate economic incentives for DERs to participate in future services. At the local level, an energy node comprised of a cluster of DERs and flexible loads will automatically decide its own reserve services strategy that takes into account short-term net load and economic incentives. By splitting these decisions between the two levels, the solution does not require extensive communication or negotiation between the local DERs and the system operators in the cloud.

Echogen Power Systems (DE), Inc.

Low-cost, Long-duration Electrical Energy Storage Using a CO2-based Pumped Thermal Energy Storage System

The Echogen Power Systems team will develop an energy storage system that uses a carbon dioxide (CO2) heat pump cycle to convert electrical energy into thermal energy by heating a "reservoir" of low-cost materials such as sand or concrete. During the charging cycle, the reservoir will store the heat that will be converted into electricity on demand in the discharge or generating cycle. To generate power, liquid CO2 will be pumped to a supercritical pressure and brought to a higher temperature using the stored heat from the reservoir. Finally, the supercritical CO2 will be used to expand through a turbine to generate electricity during the discharge cycle.

Energy Storage Systems, Inc.

10kW 80kWh Energy Storage System Based on All-Iron Hybrid Flow Battery

Energy Storage Systems (ESS) is developing a cost-effective, reliable, and environmentally friendly all-iron hybrid flow battery. A flow battery is an easily rechargeable system that stores its electrolyte--the material that provides energy--as liquid in external tanks. Currently, flow batteries account for less than 1% of the grid-scale energy storage market because of their high system costs. The ESS flow battery technology is distinguished by its cost-effective electrolytes, based on earth-abundant iron, and its innovative battery hardware design that dramatically increases power density and enables a smaller and less costly battery. Creating a high-performing and low-cost storage system would enable broad adoption of distributed energy storage systems and help bring more renewable energy technologies--such as wind and solar--onto the grid.

FloDesign Wind Turbine Corp.

Breakthrough High-Efficiency Shrouded Wind Turbine

FloDesign's innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign's unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

Fluidic, Inc.

Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

Fluidic Energy is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand--the most costly kind of power for utilities--and with much more versatile performance.

Form Energy, Inc.

Aqueous Sulfur Systems for Long-duration Grid Storage

Form Energy will develop a long-duration energy storage system that takes advantage of the low cost and high abundance of sulfur in a water-based solution. Previous MIT research demonstrated that aqueous sulfur flow batteries represent the lowest chemical cost among rechargeable batteries. However, these systems have relatively low efficiency. Conversely, numerous rechargeable battery chemistries with higher efficiency have high chemical costs. The solution requires low chemical cost, high efficiency, and streamlined architecture. The team will pursue several competing strategies and ultimately select a single approach to develop a prototype system. Focus areas include developing anode and cathode formulations, membranes, and physical system designs.

Foro Energy, Inc.

High Power Laser Decommissioning Tool

Foro Energy will develop a high-power laser tool to assist in removing the extremely tough materials constituting aging energy assets in a timely, cost-effective, safe, and environmentally responsible manner. This cutting and melting tool will be capable of transmitting high-power laser light at long distances in a field environment, greatly boosting decommissioning efficiency.

Foro Energy, Inc.

Low-Contact Drilling Technology to Enable Economical EGS Wells

Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy's laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

FuelCell Energy, Inc.

Adaptive SOFC for Ultra High Efficiency Power Systems

FuelCell Energy will develop an adaptive, pressurized solid oxide fuel cell (SOFC) for use in hybrid power systems. Hybridized power generation systems, combining energy efficient SOFCs with a microturbine or internal combustion (IC) engine, offer a path to high efficiency distributed generation from abundant natural gas. Proof-of-concept systems have shown the potential of this hybrid approach, but component optimization is necessary to increase system efficiencies and reduce costs. Existing SOFC stacks are relatively expensive components, and improving their efficiency and robustness would enhance the overall commercial viability of these systems. This team's approach is to focus directly on improving SOFCs with hybrid integration as their end goal. Their adaptive cells will withstand the necessary pressure fluctuations, and the compact stack design aims to make the best use of heat transfer while minimizing leakage losses and maintaining high performance. The team will take a modular approach, building 2-5kW stacks that can be grouped together in a pressurized container. These modules can be added or removed as needed to suit the scale of the hybrid system, enabling a range of power applications. The baseline cell technology will also be modified through advanced materials that extend the useful life of stack and mitigate the harmful effects of contaminants on fuel cell performance. If successful, these adaptive, efficient, robust SOFCs could provide a path to greater than 70% efficiency when integrated into a hybrid system.

FuelCell Energy, Inc.

Dual-Mode Intermediate Temperature Fuel Cell: Liquid Fuels and Electricity

FuelCell Energy will develop an intermediate-temperature fuel cell that will directly convert methane to methanol and other liquid fuels using advanced metal catalysts. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. FuelCell Energy's cell would create liquid fuel from natural gas. Their advanced catalysts are optimized to improve the yield and selectivity of methane-to-methanol reactions; this efficiency provides the ability to run a fuel cell on methane instead of hydrogen. In addition, FuelCell Energy will utilize a new reactive spray deposition technique that can be employed to manufacture their fuel cell in a continuous process. The combination of these advanced catalysts and advanced manufacturing techniques will reduce overall system-level costs.

Gas Technology Institute

Hybrid Solar System

Gas Technology Institute (GTI) is developing a hybrid solar converter that focuses sunlight onto solar cells with a reflective backside mirror. These solar cells convert most visible wavelengths of sunlight to electricity while reflecting the unused wavelengths to heat a stream of flowing particles. The particles are used to store the heat for use immediately or at a later time to drive a turbine and produce electricity. GTI's design integrates the parabolic trough mirrors, commonly used in CSP plants, into a dual-mirror system that captures the full solar spectrum while storing heat to dispatch electricity when the sun does not shine. Current solar cell technologies capture limited portions of the solar spectrum to generate electricity that must be used immediately. By using back-reflecting gallium arsenide (GaAs) cells, this hybrid converter is able to generate both electricity from specific solar wavelengths and capture the unused light as heat in the flowing particles. The particle-based heat storage system is a departure from standard fluid-based heat storage approaches and could enable much more efficient and higher energy density heat storage. GTI's converter could be used to provide solar electricity whether or not the sun is shining.

General Atomics

Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred--such as a downed power line or a transformer explosion--from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics' high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.

General Atomics

Soluble Lead Flow Battery Technology

General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low-cost materials. The goal is to develop a system that is far more durable than today's lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

General Compression

Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal, and nuclear generation.

General Electric

Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

General Electric (GE) Global Research is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation--if it is not kept to a low level, it could ultimately lead the insulation to fail. GE's low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

General Electric

Electrothermal Energy Storage with a Multiphase Transcritical CO2 Cycle

GE is designing and testing components of a turbine system driven by high-temperature, high-pressure carbon dioxide (CO2) to develop a more durable and efficient energy conversion system. Current solar energy system components break down at high temperatures, shortening the system's cycle life. GE's energy storage system stores heat from the sun in molten salt at moderate temperature and uses surplus electricity from the grid to create a phase change heat sink, which helps manage the temperature of the system. Initially, the CO2 remains at a low temperature and low pressure to enable more efficient energy storage. Then, the temperature and pressure of the CO2 is increased and expanded through a turbine to generate dispatchable electricity. The dramatic change in temperature and pressure is enabled by an innovative system design that prevents thermal losses across the turbine and increases its cycle life. This grid-scale energy storage system could be coupled to a hybrid solar converter to deliver solar electricity on demand.

General Electric

Tensioned Fabric Wind Blades

General Electric (GE) Power & Water is developing fabric-based wind turbine blades that could significantly reduce the production costs and weight of the blades. Conventional wind turbines use rigid fiberglass blades that are difficult to manufacture and transport. GE will use tensioned fabric uniquely wrapped around a spaceframe blade structure, a truss-like, lightweight rigid structure, replacing current clam shell wind blades design. The blade structure will be entirely altered, allowing for easy access and repair to the fabric while maintaining conventional wind turbine performance. This new design could reduce production costs by 70% and enable automated manufacturing while reducing the processing time by more than 50%. GE's fabric-based blades could be manufactured in sections and assembled on-site, enabling the construction of much larger wind turbines that can capture more wind with significantly lower production and transportation costs.

General Electric

High-Voltage, High-Power Gas Tube Technology for HVDC Transmission

General Electric (GE) Global Research is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability. GE is using new materials and innovative designs to develop tubes that not only operate well in high-power conversion, but also perform better and cost less than non-tube electrical switches. A single gas tube switch could replace many semiconductor switches, resulting in more cost effective high power converters.

General Electric

Synthetic Reserves from Aggregated Distributed Flexible Resources

General Electric (GE) Global Research along with its partners will develop a novel distributed flexibility resource (DFR) technology that aggregates responsive flexible loads and DERs to provide synthetic reserve services to the grid while maintaining customer quality-of-service. A key innovation of the project is to develop a forecast tool that will use short-term and real-time weather forecasts along with other data to estimate the reserve potential of aggregate loads and DERs. An optimization framework that will enable aggregation of large numbers of flexible loads and DERs and determine the optimal schedule to bid into the wholesale market will be designed. A scalable control and communication architecture will enable coordination and control of the resources in real-time based on a novel two-tier hierarchical optimal control algorithm.

Pages

Subscribe to Electricity Generation and Delivery