Sorry, you need to enable JavaScript to visit this website.

Electricity Generation and Delivery

Mohawk Innovative Technology, Inc.

HYPERLAMINAR FLOW ENGINE FOR COMBINED HEAT AND POWER

Mohawk Innovative Technology, Inc. (MiTi) and its partners at the University of Texas at Austin and Mitis SA will develop a 1 kW microturbine generator for residential CHP based on MiTi's hyperlaminar flow engine (HFE) design. Key innovations of the design include highly miniaturized components operating at ultra-high speeds and a viscous shear mechanism to compress air that is mixed with natural gas and undergoes a flameless combustion process that minimizes emissions. The hot combustion gas drives the turbine and generator to produce electricity and heat water for household use. Besides using the viscous shear-driven compressor and turbine impellers and flameless combustion, the turbogenerator uses permanent magnet generator elements and air foil bearings with very low power loss, all of which are combined into a highly efficient, low emission, and oil-free turbomachine for residential combined heat and power that requires little or no maintenance.

Moltex Energy USA LLC

COST SSR (Composite Structural Technologies for SSR)

Advanced reactors, including Moltex's stable salt reactor design, may be able to forgo large, expensive containment structures common in the current fleet of nuclear plants. Molten salt fuel chemically binds dangerous radionuclides, limiting the potential for radioactive gas release. The Moltex team will apply modeling and simulation to demonstrate the absence of radionuclide release for their reactor concept in accident scenarios, and the associated feasibility of using a new class of containment structures that are faster to install onsite and with higher composite strength. This new composite structural technology standardizes and expedites plant construction elements. It removes complex elements such as seismic dampers, high-performance cement mixing, and custom rebar configurations, which make nuclear construction time-consuming, labor intensive, and logistically challenging to deliver. In addition, this new technology presents an opportunity to accelerate construction for advanced reactors faster than solar, wind or combined-cycle power plants, significantly reducing the capital cost of next generation nuclear power.

NanoConversion Technologies, Inc.

High-efficiency Thermoelectric CHP

NanoConversion Technologies, along with researchers from Gas Technologies Institute (GTI), will develop a high-efficiency thermoelectric CHP system. This is a solid-state device that uses heat to create electricity and contains no moving parts, thus creating no noise or vibrations. Instead, this thermoelectric CHP engine uses a novel concentration mode-thermoelectric converter (C-TEC) to harness the heat of the natural gas combustor to vaporize and ionize sodium, creating positive sodium ions and electrons that carry electric current. The C-TEC uses this sodium expansion cycle to produce electricity using an array of electrochemical cells. The superadiabatic combustor technology from GTI provides a low emission external combustion heat source with 95% fuel-to-heat efficiency and a stable temperature compatible with the C-TEC units.

National Renewable Energy Laboratory

Economic Long-Duration Electricity Storage by Using Low-Cost Thermal Energy Storage and High-Efficiency Power Cycle

The National Renewable Energy Laboratory team will develop a high-temperature, low-cost thermal energy storage system using a high-performance heat exchanger and Brayton combined-cycle turbine to generate power. Electric heaters will heat stable, inexpensive solid particles to temperatures greater than 1100°C (2012°F) during charging, which can be stored in insulated silos for several days. To discharge the system, the hot particles will be fed through the fluidized bed heat exchanger, heating a working fluid to drive the gas turbine attached to a generator. The electricity storage system is designed to be deployed economically anywhere in the United States.

National Renewable Energy Laboratory

Ultrahigh efficiency photovoltaics at ultralow costs

This project team, led by the National Renewable Energy Laboratory (NREL), will employ hydride vapor phase epitaxy (HVPE), a fast growth technique used to produce semiconductors, to lower the manufacturing cost of multijunction solar cells. Additionally the team will develop new materials to be used in the HVPE process, enabling a chemical liftoff method that allows reuse of substrates. The chemical liftoff will mitigate costs of substrates, further reducing the overall system cost. NREL's approach will leverage this improved HVPE technology to produce thin, flexible, highly efficient multijunction cells, with very high power at low cost. III-V PV has several inherent advantages over other PV materials, including higher efficiency, low temperature coefficients, and low material usage. The novel combination of HVPE growth of multijunction solar cells and substrate reuse could result in more cost-effective, higher performing multijunction solar cells, which could ultimately lower the cost and increase the efficiency of PV systems. These innovations could spur greater adoption of PV systems and reduce reliance on fossil-fuel power generation.

National Renewable Energy Laboratory

Real-time optimization and control of next-generation distribution infrastructure

The National Renewable Energy Laboratory (NREL) lead team will develop a comprehensive distribution network management framework that unifies real-time voltage and frequency control at the home/DER controllers' level with network-wide energy management at the utility/aggregator level. The distributed control architecture will continuously steer operating points of DERs toward optimal solutions of pertinent optimization problems, while dynamically procuring and dispatching synthetic reserves based on current system state and forecasts of ambient and load conditions. The control algorithms invoke simple mathematical operations that can be embedded on low-cost microcontrollers, and enable distributed decision making on time scales that match the dynamics of distribution systems with high renewable integration.

National Renewable Energy Laboratory

RePED 250: A Revolutionary, High-Drilling Rate, High-T Geothermal Drilling System and Companion (250 - 350°C) Power Electronics

The National Renewable Energy Laboratory team will develop technologies and component devices enabling a high-rate drilling method using electric pulses to bore hot, deep geothermal wells. Compared to the softer, sedimentary rock typically found in oil and gas wells, geothermal rock is harder and less porous, and at significantly higher temperatures. These factors generate slow geothermal drilling rates averaging only 125 feet per day compared to greater than 40 times this achieved in sedimentary rock. If successful, the high-rate technology could transform drilling techniques across multiple industries. Project activities will focus on developing and testing pulsed power electronics capable of surviving the high temperatures encountered in geothermal rock. Component development will be carried out with systems integration in mind, enabling a rapid upgrade from a low-temperature rated drilling tool to a high-temperature version.

National Renewable Energy Laboratory

Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution systems and Scenarios

The National Renewable Energy Laboratory (NREL), with partner MIT-Comillas-IIT, will develop combined distribution-transmission power grid models. The team will create distribution models using a version of Comillas' Reference Network Model (RNM) that will be adapted to U.S. utilities and based on real data from a broad range of utility partners. The models will be complemented by the development of customizable scenarios that can be used for accurate algorithm comparisons. These scenarios will take into account unknown factors that affect the grid, such as future power generation technologies, increasing distributed energy resources, varying electrical load, disruptions due to weather events, and repeatable contingency sequences. These enhanced datasets and associated data building tools are intended to provide large-scale test cases that realistically describe potential future grid systems and enable the nation's research community to more accurately test advanced algorithms and control architectures. MIT-Comillas-IIT will assist NREL with the distribution model creation. Alstom Grid will assist in validating the distribution models.

National Renewable Energy Laboratory

High-Temperature, High-Efficiency Solar Thermoelectric Generators (STEG)

The National Renewable Energy Laboratory (NREL) is developing a solar thermoelectric generator to directly convert heat from concentrated sunlight to electricity. Thermoelectric devices can directly convert heat to electricity, yet due to cost and efficiency limitations they have not been viewed as a viable large-scale energy conversion technology. However, new thermoelectric materials have dramatically increased the efficiency of direct heat-to-electricity conversion. NREL is using these innovative materials to develop a new solar thermoelectric generator. This device will concentrate sunlight onto an absorbing surface on top of a thermoelectric stage, the resulting temperature difference between the top and bottom of the device will drive the generator to produce electricity at 3 times the efficiency of current systems. NREL's solar thermoelectric generator could reduce the cost associated with converting large amounts of solar energy into electricity through a much simpler and scalable process which does not rely upon moving parts and transfer fluids.

National Renewable Energy Laboratory

The FOCAL EXPERIMENTAL PROGRAM - Floating Offshore-wind and Controls Advanced Laboratory Experiment to Generate Data Set to Accelerate Innovation in Floating Wind Turbine Design and Controls

The National Renewable Energy Laboratory (NREL) in collaboration with the University of Maine (UMaine) will develop and execute the Floating Offshore-wind and Controls Advanced Laboratory (FOCAL) experimental program. The project's goal is to generate the first public FOWT scale-model dataset to include advanced turbine controls, floating hull load mitigation technology, and hull flexibility. Current FOWT numerical tools require new capabilities to adequately capture advanced designs based upon control co-design methods. The FOCAL experimental program will generate critical datasets to validate these capabilities from four 1:60-scale, 15-MW (megawatt) FOWT model-scale experimental campaigns in the UMaine Harold Alfond W2 Wind-Wave Ocean Engineering Laboratory. The experiments will generate data for FOWT loads, motion, and performance, while operating with advanced turbine and platform controls in realistic wind and waves.

National Renewable Energy Laboratory

Ultraflexible SmartFLoating Offshore Wind Turbine (USFLOWT)

The National Renewable Energy Laboratory (NREL) will design an innovative floating offshore platform (SpiderFLOAT) to unlock the offshore wind market by lowering the cost of energy below the current value of fixed-bottom offshore wind plants. The project uses a revolutionary substructure based on a bioinspired, ultra-compliant, modular, and scalable concept and advanced control system. The team will complete preliminary design of a 10-MW unit by using CCD optimization techniques and advance the commercialization of the floating offshore wind technology.

National Renewable Energy Laboratory

Wind Energy with Integrated Servo-control (WEIS): A Toolset to Enable Controls Co-Design of Floating Offshore Wind Energy Systems

The National Renewable Energy Laboratory (NREL) will develop a Wind Energy with Integrated Servo control (WEIS) model, a tool set that will enable CCD optimization of both conventional and innovative, cost-effective FOWTs. NREL's WEIS model will be entirely open-source and publicly accessible, bringing together many components and disciplines into a concurrent design environment. The new tool is based on previous well-known NREL computer simulations (OpenFAST and WISDEM) and improves their capabilities and mathematical models for aerodynamics, hydrodynamics, mechanical structures, electrical components, control systems, economic analysis, and CCD optimization. It will be flexible and modular so that users can incorporate their own design ideas, models, inputs, and load cases. The team's design will capture all of the critical nonlinear dynamics, system interactions, and life-cycle cost elements for a large range of FOWT archetypes and control actuators and sensors.

National Rural Electric Cooperative Association

GridBallast - Autonomous Load Control For Grid Resilience

The National Rural Electric Cooperative Association (NRECA) will develop GridBallast, a low-cost demand-side management technology, to address resiliency and stability concerns accompanying the exponential growth in DERs deployment in the U.S. electric grid. Specifically, devices based on GridBallast technology will monitor grid voltage and frequency and control the target load in order to address excursions from grid operating targets. The devices will operate autonomously to provide rapid local response, removing the need for costly infrastructure to communicate with a central controller. If the devices are installed with an optional radio, they will be able to support traditional demand response through peer-to-peer collaborative operation from a central operator. The team includes experts from Carnegie Mellon University, Eaton Corporation, and SparkMeter, and will focus development on two specific devices: a water heater controller, and a smart circuit controller. The GridBallast project aims to improve resiliency and reduce the cost of demand side management for voltage and frequency control by at least 50% using a streamlined design and removing the need for extensive communications infrastructure.

NAVITASMAX

Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

NAVITASMAX, along with their partners at Harvard University, Cornell University, and Barber-Nichols, is developing a novel thermal energy storage solution. This innovative technology is based on tuning the properties of simple and complex fluids to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX's system during the day and released at night--when the sun is not shining--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX's system at night and released to produce electricity during daytime peak-demand hours.

New York University

Grid Dynamics and Energy Consumption Patterns Through Remote Observations of City Light

New York University (NYU) will develop an observational platform to remotely reveal energy usage patterns of New York City using synoptic imaging of the urban skyline. The electrical grid of the future will be a complex collection of traditional centralized power generation, distributed energy resources, and emerging renewable energy technologies. Advanced energy consumption data is required to design and optimize our future grid. At present, the costly and time-consuming installation of smart meters is the only way to obtain this level of building energy information. NYU will harness astronomical lessons from the study of light emitted by stars to propose a method to understand city-level energy consumption using a single platform. This platform will develop proxy measures of energy consumption, monitor the health of the electric grid, and characterize end use. The project will use three different imaging methodologies to measure interior lights at night: persistent broadband visible, hypertemporal, and hyperspectral. Broadband visible imaging of an urban skyline will measure changes in the city lightscape. This variability serves as a proxy for occupancy and behavior patterns that, when combined with "ground truth" meter data, will be used to train models to quantify energy use. Hypertemporal visible imaging can detect and classify tiny changes over time in the oscillations of electrical lights. For urban lightscapes, phase changes in individual units can signal changes in load (e.g. appliances turning on/off), while neighborhood-level changes can indicate the health of distribution transformers. The information from these methods can serve as a low-cost supplement (and potential alternative) to smart meters. Hyperspectral observations, including bands of infrared light not visible by the human eye, allow the team to distinguish lighting technologies at night. By combining this data with their broadband visible observations, the team can uniquely quantify energy use phenomena such as technology penetration and "rebound," where the energy benefits of energy efficient lighting are partially offset by greater use. With these results, utility companies can design targeted outreach efforts to incentivize energy conservation at the consumer level. Utility providers can use these insights to improve grid resilience, preemptively detect outages, and more effectively manage assets in real time. If successful, the system is well suited to deployment in developing countries where the use of modern energy-monitoring technologies is prohibitively expensive.

Newton Energy Group, LLC

Coordinated Operation of Electric And Natural Gas Supply Networks: Optimization Processes And Market Design

The team led by Newton Energy Group will lead the Gas-Electric Co-Optimization (GECO) project to improve coordination of wholesale natural gas and power operators both at the physical and market levels. The team's approach uses mathematical methods and computational techniques that have revolutionized the field of optimal control. These methods will be applied to natural gas pipeline networks, and the final deliverable will consist of three major components. First, they will model and optimize intra-day pipeline operations represented by realistic models of gas network flow. Next, the team will develop economic theory and computation algorithms for the pricing of natural gas delivered to end users, in particular to gas-fired power plants. Finally, they will combine these two analytical components to design practical market mechanisms for efficient coordination of gas and electric systems. The goal of efficient market design is to develop a mechanism under which access to pipeline capacity will be provided on the basis of its economic value as determined by gas buyers and sellers, and not on the current allocation of physical capacity rights. The tool guarantees natural gas will be available when power plants need it, and that the power produced can be sold to consumers at a price sufficient to cover the cost of the natural gas.

NexTech Materials, Ltd. dba Nexceris, LLC

Advanced Solid Oxide Fuel Cell Stack for Hybrid Power Systems

Nexceris will develop a compact, ultra-high efficiency solid oxide fuel cell (SOFC) stack tailored for hybrid power systems. Hybridized power generation systems, combining energy efficient SOFCs with a microturbine or internal combustion (IC) engine, offer a path to high efficiency distributed generation from abundant natural gas. Proof-of-concept systems have shown the potential of this hybrid approach, but component optimization is necessary to increase system efficiencies and reduce costs. Existing SOFC stacks are relatively expensive and improving their efficiency and robustness would enhance the overall commercial viability of these systems. Nexceris' SOFC stack design includes a patented high performance planar cell design and a novel anode current collector that that provides structural support to each cell during pressurized operation, helps define the flow of fuel gas through the stack, and improves control over the reaction of natural gas in the cell, and a sealing approach that facilitates pressurized stack operation. If successful, this stack design will result in increased performance and durability at reduced cost. The 10-kW-scale cell stack building blocks will be housed within a hermetically sealed "hotbox" to reduce drastic changes in temperature and pressure during operation. These design features would allow for seamless integration with a turbine or combustion engine to maximize the overall efficiency of a hybrid system.

North Carolina State University

DEVELOPMENT OF A NEARLY AUTONOMOUS MANAGEMENT AND CONTROL SYSTEM FOR ADVANCED REACTORS

North Carolina State University (NC State) will develop a highly automated management and control system for advanced nuclear reactors. The system will provide operations recommendations to staff during all modes of plant operation except shutdown operations. Using an artificial-intelligence (AI) guided system enabling continuous extensive monitoring of plant status, knowledge of current component status, and plant parameter trends, the system will continuously predict near-term behavior within the plant and recommend a course of action to plant personnel. If successful, this comprehensive, knowledge-based control system for credible, consistent management of plant operations will improve safety and optimize emergency management in advanced reactors. AI-guided models trained on data from plant monitoring instruments combined with expectations generated by advanced modeling and simulation can vastly improve the effectiveness of plant diagnosis and prognosis in plant management, as well as enable vulnerability search in safety analysis. In particular, the system will greatly increase the time available before operator action is required. This means that a significantly smaller operational staff--assisted by instrumentation, operator training, and smart procedures--is needed to manage the plant, reducing overall operational cost.

Northrop Grumman Aerospace Systems

FSPOT-X: Full Spectrum Power for Optical/Thermal eXergy

Northrop Grumman Aerospace Systems is developing a dish-shaped sunlight-concentrating hybrid solar converter that integrates high-efficiency solar cells and a thermo-acoustic engine that generates electricity directly from heat. Current solar cells lose significant amounts of energy as heat, because they do not have heat storage capability. By integrating a high-temperature solar cell and thermo-acoustic engine into a single system, thermal energy losses are minimized. The thermo-acoustic unit, which was originally designed for space missions, converts waste heat from the solar cell into sound waves to generate electricity using as few moving parts as possible. The engine and solar cell are connected to a molten salt thermal storage unit to store heat when the sun shines and to release the heat and make electricity when the sun is not shining. Northrop Grumman's system could efficiently generate electricity more cheaply than existing solar power plants and lead to inexpensive, on-demand electricity from solar energy.

Northwestern University

A NOVEL HIERARCHICAL FREQUENCY-BASED LOAD CONTROL ARCHITECTURE

Northwestern University and its partners will develop a frequency-based load control architecture to provide additional frequency response capability and allow increased renewable generation on the grid. The work will focus on developing and demonstrating algorithms that adapt to rapid changes of loads, generation, and system configuration while taking into account various constraints arising from the transmission and distribution networks. The multi-layer control architecture makes it possible to simultaneously ensure system stability at the transmission network level, control frequency at the local distribution network level, and maintain the quality-of-service for individual customers at the building level, all under a single framework. At the transmission level, coordination among different areas will be achieved through a centralized scheme to ensure stable frequency synchronization, while the control decisions within a single area will be made based on local information. The efficiency of the centralized scheme will be ensured by decomposing the network into smaller components on which the control problem is solved individually. At the local distribution network level, the control scheme will be decentralized, in which control decisions are made based on the state of the neighboring nodes. At the building level, dynamic models for flexible appliances and DERs will be developed and used to design algorithms to optimally follow a given aggregated load profile.

Pages

Subscribe to Electricity Generation and Delivery