Sorry, you need to enable JavaScript to visit this website.

Storage

Advanced Management and Protection of Energy Storage Devices

The projects that comprise ARPA-E's AMPED Program, short for "Advanced Management and Protection of Energy Storage Devices," seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
For a detailed technical overview about this program, please click here.  

Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage

Methods for storing electricity for the electric power system (i.e. the grid) are developing rapidly, but widespread adoption of these technologies requires real-world data about their performance, economic benefit, and long-term reliability. The CHARGES program, short for "Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage," establishes two sites where ARPA-E-funded battery technologies will be tested under conditions designed to represent not just today's applications, but also the demands of tomorrow's electric power system. The program will establish realistic duty cycles for storage devices on a microgrid, and test them in both a controlled environment and under realistic microgrid operating conditions. The objective of the CHARGES program is to accelerate the commercialization of electrochemical energy storage systems developed in current and past ARPA-E-funded research efforts. The program aims to help ARPA-E-funded battery development teams improve their storage technologies to deliver substantial economic benefit under real-world conditions, both now and in the future.
For a detailed technical overview about this program, please click here.    

Duration Addition to electricitY Storage

The projects that comprise ARPA-E's DAYS (Duration Addition to electricitY Storage) program will develop energy storage systems that provide power to the electric grid for durations of 10 to approximately 100 hours, opening significant new opportunities to increase grid resilience and performance. Whereas most new energy storage systems today deliver power over limited durations, for example to alleviate transmission congestion, stabilize voltage and frequency levels, or provide intra-day shifts of energy, the extended discharge times of DAYS projects will enable a new set of applications including long-lasting backup power and even greater integration of domestic, renewable energy resources.Project teams will seek to develop storage systems that are deployable in almost any location and charge and discharge electricity at a target fixed cost per cycle. Projects will fall into two categories: 1) DAYS systems that provide daily cycling in addition to longer duration, less frequent cycling and 2) DAYS systems that do not provide daily cycling, but can take over when daily cycling resources are either filled or depleted. DAYS projects will explore a new design space in electricity storage that allows for strategic compromise of performance to achieve extremely low costs. The program also seeks to establish new paradigms for increasing stored energy and extending duration of stationary electricity storage systems.

Grid-Scale Rampable Intermittent Dispatchable Storage

The projects that comprise ARPA-E's GRIDS program, short for "Grid-Scale Rampable Intermittent Dispatchable Storage," are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.
For a detailed technical overview about this program, please click here.  

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
  For a detailed technical overview about this program, please click here.  

Innovative Development in Energy-Related Applied Science

The IDEAS program - short for Innovative Development in Energy-Related Applied Science - provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS awards may also support proof-of-concept research to develop a unique technology concept, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. This program identifies potentially disruptive concepts in energy-related technologies that challenge the status quo and represent a leap beyond today's technology. That said, an innovative concept alone is not enough. IDEAS projects must also represent a fundamentally new paradigm in energy technology and have the potential to significantly impact ARPA-E's mission areas.

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments. In response to ARPA-E's first open solicitation, more than 3,700 concept papers flooded into the new agency, which were thoroughly reviewed by a team of 500 scientists and engineers in just 6 months. In the end, 36 projects were selected as ARPA-E's first award recipients, receiving $176 million in federal funding.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind, solar, tidal and distributed generation, grid scale storage, power electronics, power grid system performance, vehicle efficiency, storage for electric vehicles, and alternative fuels and bio-energy.
For a detailed technical overview about this program, please click here.

Reliable Electricity Based on ELectrochemical Systems

Fuel cell technologies have been touted for decades due to their high chemical-to-electrical conversion efficiencies and potential for near-zero greenhouse gas emissions. Fuel cell technologies for power generation have not achieved widespread adoption, however, due primarily to their high cost relative to more established combustion technologies. There is a critical need to develop fuel cell technologies that can enable distributed power generation at low cost and high performance. The projects that comprise ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program include transformational fuel cell devices that operate in an intermediate temperature range in an attempt to create new pathways to achieve an installed cost to the end-user of less than $1,500/kW at moderate production volumes and create new fuel cell functionality that will help increase grid stability and integration of renewable energy technologies such as wind and solar.
For a detailed technical overview about this program, please click here.  

24M Technologies

Large-Area Lithium Electrode Sub-Assemblies (LESAs) Protected by Self-Forming Microstructured Polymer-Inorganic Single-Ion Conducting Composites

24M Technologies will lead a team to develop low cost, durable, enhanced separators/solid state electrolytes to build batteries using a lithium metal anode. Using a polymer/solid electrolyte ceramic blend, 24M will be able to make a protective layer that will help eliminate side reactions that have previously contributed to performance degradation and provide a robust mechanical barrier to branchlike metal fibers called dendrites. Unimpeded, dendrites can grow to span the space between the negative and positive electrodes, causing a short-circuit. The resulting, large-area lithium electrode sub-assemblies, or LESAs, will be cost-effective solutions that are scalable to high-volume manufacturing while providing a toolbox to further tailor electrode performance.

3M

Low Cost, Durable Anion Exchange Membranes

The 3M Company will develop a new anion exchange membrane (AEM) technology with widespread applications in fuel cells, electrolyzers, and flow batteries. Unlike many proton exchange membrane (PEM) applications, the team's AEM will operate in an alkaline environment, which means lower-cost electrodes can be used. The team plans to engineer a membrane that simultaneously meets key goals for resistance, mechanical and chemical stability, and cost. They will do this by focusing on simple, hydroxide-stable polymers, such as polyethylene, and stable cations, such as tetraalkylammonium and imidazolium groups. Positively-charged cation side chains attached to the polymer backbone will facilitate passage of hydroxide ions through the electrolyte, resulting in enhanced ionic conductivity. The proposed polymer chemistry is envisioned to be low cost and can be used in alkaline environments, and can be processed into mechanically robust membrane composites. This membrane technology has the potential to enable high volume, low-cost production of AEMs. The impact of this project can be transformational as the commercial availability of high-quality AEMs has been a limiting factor in developing AEM-based devices.

ABB, Inc.

Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today's best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations--generally less than a few minutes. ABB's system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a cost-effective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

Abengoa Solar, LLC

High-Efficiency Solar-Electric Conversion Power Tower

Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa's conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

Alveo Energy

Open Framework Electrode Batteries for Cost-Effective Stationary Storage

Alveo is developing a grid-scale storage battery using Prussian Blue dye as the active material within the battery. Prussian Blue is most commonly known for its application in blueprint documents, but it can also hold electric charge. Though it provides only modest energy density, Prussian Blue is so readily available and inexpensive that it could provide a cost-effective and sustainable storage solution for years to come. Alveo will repurpose this inexpensive dye for a new battery that is far cheaper and less sensitive to temperature, air, and other external factors than comparable systems. This will help to facilitate the adoption and deployment of renewable energy technology. Alveo's Prussian Blue dye-based grid-scale storage batteries would be safe and reliable, have long operational lifetime, and be cheaper to produce than any existing battery technology.

American Manufacturing, Inc.

Flash Sintering System for Manufacturing Ion-Conducting Solids

American Manufacturing, Inc., in collaboration with the University of Colorado at Boulder, will develop a flash sintering system to manufacture solid lithium-conducting electrolytes with high ionic conductivity. Conventional sintering is the process of compacting and forming a solid mass by heat and/or pressure without melting it to the point of changing it to a liquid, similar to pressing a snowball together from loose snow. In conventional sintering a friable ceramic "bisque" is heated for several hours at very high temperatures until it becomes dense and strong. Oxide ceramics for solid-state electrolytes have high melting points, and some are chemically stable and do not react with lithium metal, which can reduce cost and maximize energy density. But the sintering process requires several hours at very high temperatures (1100°C). These conditions conflict with the fast movement of lithium atoms in the solid state, which is a key property of the electrolyte. Therefore, the manufacture of these electrolytes by the conventional sintering process is a key barrier to their cost and viability. In contrast, flash sintering can occur in fewer than 5 seconds, at temperatures below 800°C, and can prevent the loss of lithium experienced in conventional sintering. This project is expected to improve lithium battery technology in the following ways: lowering the cost of sintering and processing; enhancing productivity through roll-to-roll manufacturing of co-sintered multilayers ready to be inserted into devices; and hastening the discovery of new materials by shortening the time between synthesis of new chemistries and their electrochemical evaluation to days instead of months.

Argonne National Laboratory

Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural Gas to Electricity and Liquid Fuels

ANL is developing a new hybrid fuel cell technology that could generate both electricity and liquid fuels from natural gas. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. In addition to generating electricity from hydrogen, ANL's fuel cell would produce ethylene--a liquid fuel precursor--from natural gas. In this design, a methane-coupling catalyst is added to the anode side of a fuel cell that, when fed with natural gas, creates a chemical reaction that produces ethylene and utilizes leftover hydrogen, which is then passed through a proton-conducting membrane to generate electricity. Removing hydrogen from the reaction site leads to increased conversion of natural gas to ethylene.

Battelle Memorial Institute

Battery Fault Sensing in Operating Batteries

Battelle is developing an optical sensor to monitor the internal environment of lithium-ion (Li-Ion) batteries in real-time. Over time, crystalline structures known as dendrites can form within batteries and cause a short circuiting of the battery's electrodes. Because faults can originate in even the tiniest places within a battery, they are hard to detect with traditional sensors. Battelle is exploring a new, transformational method for continuous monitoring of operating Li-Ion batteries. Their optical sensors detect internal faults well before they can lead to battery failures or safety problems. The Battelle team will modify a conventional battery component to scan the cell's interior, watching for internal faults to develop and alerting the battery management system to take corrective action before a hazardous condition occurs.

Beacon Power, LLC

Development of a 100 kWh/100 kW Flywheel Energy Storage Module

Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds--slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today's flywheels. Beacon Power's flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.

Case Western Reserve University

High Energy Storage Capacity Low-Cost Iron Flow Battery

Case Western is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today's cost. Ultimately, this technology could help reduce the cost of stationary energy storage enough to facilitate the adoption and deployment of renewable energy technology.

Pages

Subscribe to Storage