Sorry, you need to enable JavaScript to visit this website.


Citrine Informatics

A Machine Learning-Based Materials Discovery Paradigm Applied to Solid Ion Conductors

The Citrine Informatics team is demonstrating a proof-of-concept for a system that would use experimental work to intelligently guide the investigation of new solid ionic conductor materials. If successful, the project will create a new approach to material discovery generally and new direction for developing promising ionic conductors specifically. The project will aggregate data (both quantitative and meta-data related to experimental conditions) relevant to ionic conductors from the published literature and build advanced, machine learning models for prediction based upon the resulting large database. The team's system will also experimentally explore the new materials space identified and suggested by the models. The Citrine project could provide researchers near-real-time feedback as they perform experiments, allowing them to dynamically select the most promising research pathways. This would in turn unlock more rapid ionic conductor identification and development, and transform the fields of theoretical and experimental materials science at-large.

Colorado School of Mines

Low Cost Membrane Reactor Synthesis of Ammonia at Moderate Conditions 

The Colorado School of Mines will develop a membrane reactor concept to synthesize ammonia at ambient pressure. In traditional ammonia production processes, nitrogen (N2) and hydrogen (H2) compete for identical catalyst sites, and the presence of each inhibits the other, with the overall rate reflecting a compromise. The team proposes decoupling and independently controlling the N2 and H2 dissociation by dedicating one side of the composite membrane to each. In this way, the catalysts may be individually optimized. Highly effective catalysts have been previously demonstrated for H2 dissociation, and the team's focus will be on exploring early transition metals which have shown great promise as catalysts for N2 dissociation. When perfected, this technology will allow the production of ammonia at ambient pressure, reducing the scale and number of steps required in the process. This method is also an improvement over electrochemical processes, which have a more complicated design and reduced efficiency due to the need for an external voltage.

Colorado School of Mines

Low-Cost Intermediate-Temperature Fuel Flexible Protonic Ceramic Fuel Cell Stack

The Colorado School of Mines (Mines) is developing a mixed proton and oxygen ion conducting electrolyte that will allow a fuel cell to operate at temperatures less than 500°C. By using a proton and oxygen ion electrolyte, the fuel cell stack is able to reduce coking - which clogs anodes with carbon deposits - and enhance the process of turning hydrocarbon fuels into hydrogen. Today's ceramic fuel cells are based on oxygen-ion conducting electrolytes and operate at high temperatures. Mines' advanced mixed proton and oxygen-ion conducting fuel cells will operate on lower temperatures, and have the capacity to run on hydrogen, ethanol, methanol, or methane, representing a drastic improvement over using only oxygen-ion conducting electrolytes. Additionally, the fuel cell will leverage a recently developed ceramic processing technique that decreases fuel cell manufacturing cost and complexity. Additionally, their technology will reduce the number of manufacturing steps from 15 to 3, drastically reducing the cost of distributed generation applications.

Colorado School of Mines

Hybrid Polyoxometalate Membranes for High Proton Conduction with Redox Ion Exclusion

The Colorado School of Mines will develop a new membrane for redox flow battery systems based on novel, low-cost materials. The membrane is a hybrid polymer that includes heteropoly acid molecules and a special purpose fluorocarbon-based synthetic rubber called a fluoroelastomer. The team will enhance the membrane's selectivity by refining the polymer structure, employing crosslinking techniques, and also through doping the polymer with cesium. The fluoroelastmer is commercially available, thereby contributing to a superior performance-to-cost ratio for the membrane. Flow battery experts at Lawrence Berkeley Laboratory will extensively test the selectivity, conductivity, and stability of the membranes developed in this project, and 3M will apply its decades of membrane fabrication experience to scale-up the new technology. If successfully developed, the separator in this project will increase efficiency and reduce cost in existing flow battery systems such as the all-iron redox flow battery.

CUNY Energy Institute

Low-Cost Grid-Scale Electrical Storage Using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. Traditional consumer-grade disposable batteries are made of Zinc and Manganese, two inexpensive, abundant, and non-toxic metals, but these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they form. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

Det Norske Veritas (U.S.A)

Sensor-Enhanced and Model-Validated Batteries for Energy Storage

DNV KEMA is testing a new gas monitoring system developed by NexTech Materials to provide early warning signals that a battery is operating under stressful conditions and at risk of premature failure. As batteries degrade, they emit low level quantities of gas that can be measured over the course of a battery's life-time. DNV KEMA is working with NexTech to develop technology to accurately measure these gas emissions. By taking accurate stock of gas emissions within the battery pack, the monitoring method could help battery management systems predict when a battery is likely to fail. Advanced prediction models could work alongside more traditional models to optimize the performance of electrical energy storage systems going forward. In the final phase of the project, DNV KEMA will build a demonstration in a community energy storage system with Beckett Energy Systems.

Det Norske Veritas (U.S.A)

Third Party Valuation of Grid and Microgrid Energy Storage Technologies

DNV GL and Group NIRE will provide a unique combination of third-party testing facilities, testing and analysis methodologies, and expert oversight to the evaluation of ARPA-E-funded energy storage systems. The project will leverage DNV GL's deep expertise in economic analysis of energy storage technologies, and will implement economically optimized duty cycles into the testing and validation protocol. DNV GL plans to test ARPA-E storage technologies at its state-of-the-art battery testing facility in partnership with the New York Battery and Energy Storage Technology Consortium. Those batteries that pass the rigorous evaluation process will be adapted for testing under real world conditions on Group NIRE's multi-megawatt, wind-integrated microgrid in Texas. Testing will show how well the ARPA-E storage technologies can serve critical applications and will assist ARPA-E-funded battery developers in identifying any issues with performance and durability. This testing will also deliver performance data that buyers of grid storage need, enabling informed choices about commercial adoption of grid storage technologies.

Dioxide Materials, Inc.

High Efficiency Alkaline Water Electrolyzers for Grid Scale Energy Storage

The team led by Dioxide Materials, Inc. will develop an alkaline water electrolyzer for an improved power-to-gas system. The team's electrochemical cells are composed of an anode, a cathode, and a membrane that allows anions to pass through, while being electrically insulating. High-conductivity anion exchange membranes are rare and often do not have the chemical or mechanical stability to withstand H2 production at elevated pressures. Therefore, the project is focused on developing an anion exchange membrane that is low-cost, is manufacturable in a scaleable process, and has sufficient conductivity, chemical stability, and mechanical strength. Moreover, by operating at alkaline instead of acidic conditions, the electrochemical cells do not need to use expensive precious metal catalysts, which most systems require to prevent corrosion. Dioxide Materials, Inc. estimates that operating under alkaline conditions could lead to a 10x lower electrolyzer stack cost due to higher current densities and lower material costs (i.e. non-precious metals). The system will be compatible with intermittent energy sources because it can operate at lower temperatures than competiting technologies, thus allowing startup times on the order of seconds.


Planar Sodium-Beta Batteries for Renewable Integration and Grid Applications

EaglePicher is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

Eaton Corporation

Predictive Battery Management for Commercial Hybrid Vehicles

Eaton is developing advanced battery and vehicle systems models that will enable fast, accurate estimation of battery health and remaining life. The batteries used in hybrid vehicles are highly complex and require advanced management systems to maximize their performance. Eaton's battery models will be coupled with hybrid powertrain control and power management systems of the vehicle enabling a broader, more comprehensive vehicle management system for better optimization of battery life and fuel economy. Their design would reduce the sticker price of commercial hybrid vehicles, making them cost-competitive with non-hybrid vehicles.

Energy Storage Systems, Inc.

10kW 80kWh Energy Storage System Based on All-Iron Hybrid Flow Battery

ESS is developing a cost-effective, reliable, and environmentally friendly all-iron hybrid flow battery. A flow battery is an easily rechargeable system that stores its electrolyte-the material that provides energy-as liquid in external tanks. Currently, flow batteries account for less than 1% of the grid-scale energy storage market because of their high system costs. The ESS flow battery technology is distinguished by its cost-effective electrolytes, based on earth-abundant iron, and its innovative battery hardware design that dramatically increases power density and enables a smaller and less costly battery. Creating a high-performing and low-cost storage system would enable broad adoption of distributed energy storage systems and help bring more renewable energy technologies-such as wind and solar-onto the grid.

Feasible, Inc.

Electrochemical-Acoustic Signal Interrogation Analysis of Batteries

Feasible Inc. will develop a non-invasive, low-cost, ultrasonic diagnostic system that links the electrochemical reactions taking place inside a battery with changes in how sound waves propagate through the battery. This Electrochemical Acoustic Signal Interrogation (EASI) analysis will bridge the gap in battery diagnostics between structural insights and electrical measurements, offering both speed and scalability. The physical processes of a battery that affect performance are nearly impossible to monitor with standard diagnostic methods. EASI can provide insights into the battery development, manufacturing, and management life cycle. This capability is enabled by acoustic analysis, which is a fundamentally new tool in its application to batteries, and will aid cell design and development, improve manufacturing quality and yield thereby decreasing cost, and decrease inefficiencies in battery utilization and system design. During a prior ARPA-E IDEAS award, Princeton University developed the proof of concept for this technology that linked the propagation of sound waves through a battery to the state of the material components within the battery. Now, as Feasible Inc., the team will further the development of their sensing techniques and build a database of acoustic signatures for different battery chemistries, form factors, and use conditions. If successful, this ultrasonic diagnostic system will lead to improved battery quality, safety, and performance of electric vehicle and grid energy storage systems via two avenues: (1) more thorough and efficient cell screening during production, and (2) physically relevant information to better inform battery management strategies.

Fluidic, Inc.

Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand-the most costly kind of power for utilities-and with much more versatile performance.

Ford Motor Company

High-Precision Tester for Automotive and Stationary Batteries

Ford is developing a commercially viable battery tester with measurement precision that is significantly better than today's best battery testers. Improvements in the predictive ability of battery testers would enable significant reductions in the time and expense involved in electric vehicle technology validation. Unfortunately, the instrumental precision required to reliably predict performance of batteries after thousands of charge and discharge cycles does not exist in today's commercial systems. Ford's design would dramatically improve the precision of electric vehicle battery testing equipment, which would reduce the time and expense required in the research, development, and qualification testing of new automotive and stationary batteries.

FuelCell Energy, Inc.

Dual-Mode Intermediate Temperature Fuel Cell: Liquid Fuels and Electricity

FuelCell Energy will develop an intermediate-temperature fuel cell that will directly convert methane to methanol and other liquid fuels using advanced metal catalysts. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. FuelCell Energy's cell would create liquid fuel from natural gas. Their advanced catalysts are optimized to improve the yield and selectivity of methane-to-methanol reactions; this efficiency provides the ability to run a fuel cell on methane instead of hydrogen. In addition, FuelCell Energy will utilize a new reactive spray deposition technique that can be employed to manufacture their fuel cell in a continuous process. The combination of these advanced catalysts and advanced manufacturing techniques will reduce overall system-level costs.

Gayle Technologies, Inc.

State-of-Health by Ultrasonic Battery Monitoring with In-Service Testing (SUBMIT)

Gayle is developing a laser-guided, ultrasonic electric vehicle battery inspection system that would help gather precise diagnostic data on battery performance. The batteries used in hybrid vehicles are highly complex, requiring advanced management systems to maximize their performance. Gayle's laser-guided, ultrasonic system would allow for diagnosis of various aspects of the battery system, including inspection for defects during manufacturing and assembly, battery state-of-health, and flaws that develop from mechanical or chemical issues with the battery system during use. Because of its non-invasive nature, relatively low cost, and potential for yielding broad information content, this innovative technology could increase productivity in battery manufacturing and better monitor battery conditions during use or service.

General Atomics

Soluble Lead Flow Battery Technology

General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low-cost materials. The goal is to develop a system that is far more durable than today's lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

General Compression

Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal, and nuclear generation.

General Electric

Control Enabling Solutions with Ultrathin Strain and Temperature Sensor System for Reduced Battery Life Cycle Cost

GE is developing low-cost, thin-film sensors that enable real-time mapping of temperature and surface pressure for each cell within a battery pack, which could help predict how and when batteries begin to fail. The thermal sensors within today's best battery packs are thick, expensive, and incapable of precisely assessing important factors like temperature and pressure within their cells. In comparison to today's best systems, GE's design would provide temperature and pressure measurements using smaller, more affordable sensors than those used in today's measurement systems. Ultimately, GE's sensors could dramatically improve the thermal mapping and pressure measurement capabilities of battery management systems, allowing for better prediction of potential battery failures.

Georgia Tech Research Corporation

A Novel Intermediate-Temperature Fuel Cell Tailored for Efficient Utilization of Methane

Georgia Tech is developing a fuel cell that operates at temperatures less than 500°C by integrating nanostructured materials into all cell components. This is a departure from traditional fuel cells that operate at much lower or much higher temperatures. By developing multifunctional anodes that can efficiently reform and directly process methane, this fuel cell will allow for efficient use of methane. Additionally, the Georgia Tech team will develop nanocomposite electrolytes to reduce cell temperature without sacrificing system performance. These technological advances will enable an efficient, intermediate-temperature fuel cell for distributed generation applications.


Subscribe to Storage