Sorry, you need to enable JavaScript to visit this website.


Massachusetts Institute of Technology

Thermal Energy Grid Storage (TEGS) Using Multi-Junction Photovoltaics (MPV)

MIT will develop critical components for a new, cost-effective, high efficiency power storage system to store renewable energy at grid scale and discharge it on demand. The system combines low-cost, very high-temperature energy storage with high-efficiency, innovative semiconductor converters used to transform heat into electricity. MIT's technology would store heat at temperatures above 2000°C (3600°F) and convert it to electricity using specialized photovoltaic cells designed to remain efficient under the intense infrared heat a high-temperature emitter radiates. MIT will also develop several infrastructure components that will enable stable operations for long periods without any discernable loss in conversion efficiency.

Materials & Systems Research, Inc.

Advanced sodium batteries with enhanced safety and low cost processing

Materials & Systems Research, Inc. (MSRI) is developing a high-strength, low-cost solid-state electrolyte membrane structure for use in advanced grid-scale sodium batteries. The electrolyte, a separator between the positive and negative electrodes, carries charged materials called ions. In the solid electrolyte sodium batteries, sodium ions move through the solid-state ceramic electrolyte. This electrolyte is normally brittle, expensive, and difficult to produce because it is formed over the course of hours in high-temperature furnaces. With MSRI's design, this ceramic electrolyte will be produced cheaply within minutes by single-step coating technologies onto high-strength support materials. The high-strength support material provides excellent structural integrity, much superior to the conventional cell design, which depends solely on the brittle ceramic material for its strength. The resulting stronger, cheaper sodium battery design will enable a new generation of low-cost, safe, and reliable batteries for grid-scale energy storage applications.

Materials & Systems Research, Inc.

Intermediate-Temperature Electrogenerative Cells for Flexible Cogeneration of Power and Liquid Fuel

Materials & Systems Research, Inc. (MSRI) is developing an intermediate-temperature fuel cell capable of electrochemically converting natural gas into electricity or liquid fuel in a single step. Existing solid-oxide fuel cells (SOFCs) convert the chemical energy of hydrocarbons--such as hydrogen or methane--into electricity at higher efficiencies than traditional power generators, but are expensive to manufacture and operate at extremely high temperatures, introducing durability and cost concerns over time. Existing processes for converting methane to liquid transportation fuels are also capital intensive. MSRI's technology would convert natural gas into liquid fuel using efficient catalysts and a cost-effective fabrication process that can be readily scaled up for mass production. MSRI's technology will provide low-cost power or liquid fuel while operating in a temperature range of 400-500ºC, enabling better durability than today's high-temperature fuel cells.

Michigan State University

Scalable Thermochemical Option for Renewable Energy Storage (STORES)

The Michigan State University team will develop a modular thermal energy storage system that uses electricity from sources like wind and solar power to heat up a bed of magnesium manganese oxide (Mg-Mn-O) particles to high temperatures. Once heated, the Mg-Mn-O will release oxygen and store the heat energy in the form of chemical energy. Later, when additional power is needed, the system will pass air over the particle bed, initiating a chemical reaction that releases heat to drive a gas turbine generator. The low cost of magnesium and manganese oxides will enable the system to be cost competitive.

National Renewable Energy Laboratory

Economic Long-Duration Electricity Storage by Using Low-Cost Thermal Energy Storage and High-Efficiency Power Cycle

The National Renewable Energy Laboratory team will develop a high-temperature, low-cost thermal energy storage system using a high-performance heat exchanger and Brayton combined-cycle turbine to generate power. Electric heaters will heat stable, inexpensive solid particles to temperatures greater than 1100°C (2012°F) during charging, which can be stored in insulated silos for several days. To discharge the system, the hot particles will be fed through the fluidized bed heat exchanger, heating a working fluid to drive the gas turbine attached to a generator. The electricity storage system is designed to be deployed economically anywhere in the United States.


Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

NAVITASMAX, along with their partners at Harvard University, Cornell University, and Barber-Nichols, is developing a novel thermal energy storage solution. This innovative technology is based on tuning the properties of simple and complex fluids to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX's system during the day and released at night--when the sun is not shining--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX's system at night and released to produce electricity during daytime peak-demand hours.

Oak Ridge National Laboratory

Innovative Proton Conductive Membranes Based on Two Dimensional Materials

The team led by Oak Ridge National Laboratory (ORNL) will design proton-selective membranes for use in storage technologies, such as flow batteries, fuel cells, or electrolyzers for liquid-fuel storage. Current proton-selective membranes (e.g. Nafion) require hydration, but the proposed materials would be the first low-temperature membranes that conduct protons without the need for hydration. The enabling technology relies on making single-layer membranes from graphene or similar materials and supporting them for mechanical stability. The team estimates that these membranes can be manufactured at costs around one order of magnitude lower than Nafion membranes. Due to the lower system complexity, the team's innovations would enable fuel cell production at lower system-level costs.

Pacific Northwest National Laboratory

Reversible Metal Hydride Thermal Storage for High Temperature Power Generation Systems

Pacific Northwest National Laboratory (PNNL) is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night--when the sun is not out--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL's metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL's storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL's thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

Palo Alto Research Center

Medium-temperature oxygen-conducting fuel cell based on a novel membrane structure

Palo Alto Research Center (PARC) is developing an intermediate-temperature fuel cell that is capable of utilizing a wide variety of carbon-based input fuels such as methane, butane, propane, or coal without reformation. Current fuel cell technologies require the use of a reformer - which turns hydrocarbon fuels into hydrogen and can generate heat and produce gases. PARC's design will include a novel electrolyte membrane system that doesn't have a methane-to-hydrogen reformer, and transports oxygen in a form that allows it to react directly with almost any fuel. This new membrane system eliminates the need for a separate fuel processing system all while reducing overall costs. PARC's fuel cell will also operate at relatively low temperatures of 200-300ºC which allows it to use less expensive materials and maintain durability. With the use of these materials, the fuel cell system avoids the long-term durability problems associated with existing higher-temperature fuel cells, all while reducing overall costs.

PolyPlus Battery Company

High Performance, Low Cost Aqueous Lithium/Sulfur Batteries

PolyPlus Battery Company is developing an innovative, water-based Lithium-Sulfur (Li-S) battery. Today, Li-S battery technology offers the lightest high-energy batteries that are completely self-contained. New features in these water-based batteries make PolyPlus' lightweight battery ideal for a variety of military and consumer applications. The design could achieve energy densities between 400-600 Wh/kg, a substantial improvement from today's state-of-the-art Li-Ion batteries that can hold only 150 Wh/kg. PolyPlus' technology--with applications for vehicle transportation as well as grid storage--would be able to transition to a widespread commercial and military market.

Primus Power

Low-Cost, High Performance 50 Year Electrodes

Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power's flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

Primus Power

Minimal Overhead Storage Technology for Duration Addition to Electricity Storage

The Primus Power team will work with the Columbia Electrochemical Energy Center to develop a long-duration grid energy storage solution that leverages a new approach to the zinc bromine battery, a popular chemistry for flow batteries. Taking advantage of the way zinc and bromine behave in the cell, the battery will eliminate the need for a separator to keep the reactants apart when charged, as well as allow all the electrolyte to be stored in a single tank, instead of multiple cells. This reduction in "balance of plant" hardware will reduce system cost.

Princeton University

FEASIBLE: Fast Electrochemical Acoustic Signal Interrogation for Battery Lifetime Extrapolation and Extension

Princeton University is developing a non-invasive, low-cost, ultrasonic diagnostic system to determine battery state-of-health and state-of-charge, and to monitor internal battery defects. This system links the propagation of sound waves through a battery to the material properties of components within the battery. As a battery is cycled, the density and mechanical properties of its electrodes change; as the battery ages, it experiences progressive formation and degradation of critical surface layers, mechanical degradation of electrodes, and consumption of electrolyte. All of these phenomena affect how the sound waves pass through the battery. There are very few sensing techniques available that can be used during battery production and operation which can quickly identify changes or faults within the battery as they occur. As an ARPA-E IDEAS project, this early stage research project will provide proof of concept for the sensing technique and build a database of acoustic signatures for different battery chemistries, form factors, and use conditions. If successful, this ultrasonic diagnostic system will improve battery quality, safety, and performance of electric vehicle and grid energy storage systems via two avenues: (1) more thorough and efficient cell screening during production, and (2) physically relevant information for more informed battery management strategies.

Proton Energy Systems

Dual Mode Energy Conversion and Storage Flow Cell

Proton Energy Systems will develop a hydrogen-iron flow battery that can generate hydrogen for use and energy storage on the electric grid. This dual-purpose device can be recharged using renewable grid electricity and either store the hydrogen or run in reverse, as a flow cell battery, when electricity is needed. The team will develop low-cost catalysts to use on both electrodes and leverage their expertise in system engineering to keep the costs low. By using two highly reversible single electron reactions, the round trip efficiency could exceed 80%. By operating at much higher efficiencies than traditional electrolyzers, this technology could offer multiple value streams thereby enabling widespread adoption of distributed storage and hydrogen fueling.

Proton Energy Systems

Transformative Renewable Energy Storage Devices Based on Neutral Water

Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems' new technology will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems' design will have similar performance to today's regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

Quidnet Energy Inc

Geomechanical Pumped Storage

The Quidnet Energy team will develop a modified pumped hydro energy storage system that stores energy via high-pressure water in the subsurface. To charge, the team will pump water into confined rock underground, creating high pressures. When energy is needed later, the pressure forces water back up the well and through a generator to produce electricity. The Quidnet team will demonstrate the reversibility of this process and the ability to translate it across multiple types of geography within the U.S.

Rensselaer Polytechnic Institute

Channeling Engineering of Hydroxide Ion Exchange Polymers and Reinforced Membranes

Rensselaer Polytechnic Institute (RPI) will develop hydroxide ion-conducting polymers that are chemically and mechanically stable for use in anion exchange membranes (AEM). Unlike PEMs, AEMs can be used in an alkaline environment and can use inexpensive, non-precious metal catalysts such as nickel. Simultaneously achieving high ion conductivity and mechanical stability has been a challenge because high ion exchange capacity causes swelling, which degrades the system's mechanical strength. To solve this problem, the team plans to decouple the structural units of the AEM that are responsible for ion conduction and mechanical properties, so that each can contribute to the overall properties of the AEM. The team will also use channel engineering to provide a direct path for ion transport, with minimal room for water, in order to achieve high ion conductivity with low swelling. If successful, the team hopes to create a pathway to the first commercial hydroxide ion exchange membrane products suitable for electrochemical energy conversion technologies.

Sharp Laboratories of America

Low Cost Sodium-ion Battery to Enable Grid Scale Energy Storage: Prussian Blue-Derived Cathode and Complete Battery Integration

Sharp Laboratories of America and their partners at the University of Texas and Oregon State University are developing a sodium-based battery that could dramatically increase battery cycle life at a low cost while maintaining a high energy capacity. Current storage approaches use either massive pumped reservoirs of water or underground compressed air storage, which carry serious infrastructure requirements and are not feasible beyond specific site limitations. Therefore, there is a critical need for a scalable, adaptable battery technology to enable widespread deployment of renewable power. Sodium ion batteries have the potential to perform as well as today's best lithium-based designs at a significantly lower cost. Sharp Labs' new battery would provide long cycle life, high energy density, and safe operation if deployed throughout the electric grid.

SiEnergy Systems

Direct hydrocarbon fuel cell - battery hybrid electrochemical system

SiEnergy Systems is developing a hybrid electrochemical system that uses a multi-functional electrode to allow the cell to perform as both a fuel cell and a battery, a capability that does not exist today. A fuel cell can convert chemical energy stored in domestically abundant natural gas to electrical energy at high efficiency, but adoption of these technologies has been slow due to high cost and limited functionality. SiEnergy's design would expand the functional capability of a fuel cell to two modes: fuel cell mode and battery mode. In fuel cell mode, non-precious metal catalysts are integrated at the cell's anode to react directly with hydrocarbons such as the methane found in natural gas. In battery mode, the system will provide storage capability that offers faster response to changes in power demand compared to a standard fuel cell. SiEnergy's technology will operate at relatively low temperatures of 300-500ºC, which makes the system more durable than existing high-temperature fuel cells.

Southwest Research Institute


SwRI's storage system is based on an innovative thermodynamic cycle to store energy in hot and cold fluids. This technology features a simplified system, high round-trip conversion efficiencies (the ratio of energy put in to energy retrieved from storage), and low plant costs. At full scale, the technology would provide more than 10 hours of electricity at rated power (the highest power input allowed to flow through particular equipment). SwRI will build a small kW-scale electric demonstrator to validate the technology, and develop control strategy and operational procedures. This grid-scale energy storage systems will help make the U.S. more energy secure, and resilient.


Subscribe to Storage