Sorry, you need to enable JavaScript to visit this website.

Transportation

Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives

The ASCEND program supports the development of innovative lightweight and ultra-efficient electric motors, drives, and associated thermal management systems (collectively referred to as the all-electric powertrain) that will help enable net-zero carbon emissions in single-aisle, 150-200 passenger commercial aircraft, such as the Boeing 737. The ASCEND program sets a benchmark of the fully integrated all-electric powertrain system at a power density of ≥ 12 kW/kg with an efficiency at ≥ 93%. Currently, these targets, among others, are beyond the capability of state-of-the-art technologies and will require creative thinking and innovation in the electric motor and power electronics space. The ASCEND performers will work in two phases, delivering the: - Conceptual designs and computer simulations of the motor, its drive, and their integration, as well as subsystem/component level demonstrations for the proposed key enabling technologies to support the performance projections. Phase I will be 18 months long. - Development, fabrication, and testing of an integrated sub-scale all- electric powertrain (≥ 250 kW), including its thermal management system. (Successful projects may proceed to Phase II subject to budgetary restrictions.)

Batteries for Electrical Energy Storage in Transportation

The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The projects in ARPA-E's BEEST program, short for "Batteries for Electrical Energy Storage in Transportation," could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.
 For a detailed technical overview about this program, please click here.  

Design Intelligence Fostering Formidable Energy Reduction and Enabling Novel Totally Impactful Advanced Technology Enhancements

In the 250 years since the dawn of the Industrial Revolution, the pace of technology-driven economic growth has dwarfed that achieved in prior centuries. The emerging artificial intelligence revolution has similar transformational potential, which we seek to leverage to help resolve the energy and environmental challenges that are tied to the modern industrial age. Artificial intelligence (A.I.) makes it possible for machines to learn from experience, adjust to new inputs and perform like humans. Machine learning is a core part of A.I., and it is the study of computer algorithms that improve automatically through experience. Incorporating machine learning into the energy technology and/or product design processes is anticipated to facilitate a rapid transition to lower-carbon-footprint energy sources and systems.

Microorganisms for Liquid Transportation Fuel

ARPA-E's Electrofuels program is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on electrofuels.
For a detailed technical overview about this program, please click here.  

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
  For a detailed technical overview about this program, please click here.  

Innovative Development in Energy-Related Applied Science

The IDEAS program - short for Innovative Development in Energy-Related Applied Science - provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS awards may also support proof-of-concept research to develop a unique technology concept, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. This program identifies potentially disruptive concepts in energy-related technologies that challenge the status quo and represent a leap beyond today's technology. That said, an innovative concept alone is not enough. IDEAS projects must also represent a fundamentally new paradigm in energy technology and have the potential to significantly impact ARPA-E's mission areas.

Integration and Optimization of Novel Ion-Conducting Solids

Today's growing demand for electricity from carbon-free, renewable resources and for alternatives to petroleum as a transportation fuel has led to a strong desire for cost-effective and durable energy storage and conversion products. The projects that make up ARPA-E's IONICS program, short for "Integration and Optimization of Novel Ion-Conducting Solids," are paving the way for technologies that overcome the limitations of current battery and fuel cell products by creating high performance separators and electrodes built with solid ion conductors. The program will focus on developing new processing methods and approaches to device integration to accelerate devices built with high performance ion-conducting solids to commercial deployment.
For a detailed technical overview about this program, please click here.    

Macroalgae Research Inspiring Novel Energy Resources

The projects that comprise ARPA-E's MARINER (Macroalgae Research Inspiring Novel Energy Resources) program seek to develop the tools to enable the United States to become a global leader in the production of marine biomass. Presently, macroalgae, or seaweed, is primarily used as food for human consumption, but there is a growing opportunity for the production of macroalgae for use as feedstock for fuels and chemicals, as well as animal feed. ARPA-E estimates the United States has suitable conditions and geography to produce at least 500 million dry metric tons of macroalgae per year. Such production volumes could yield about 2.7 quadrillion BTUs (quads) of energy in the form of liquid fuel, roughly 10% of the nation's annual transportation energy demand.MARINER project teams will develop technologies capable of providing economically viable, renewable biomass for energy applications without the need for land, fresh water, and synthetic fertilizers. Such technologies include integrated cultivation and harvesting systems, advanced component technologies, computational modeling tools, aquatic monitoring tools, and advanced breeding and genetic tools. Successful technologies must help greatly reduce the capital and operational expenses related to macroalgae production and enable significant increases in farm size and potential areas of deployment.
For a detailed technical overview about this program, please click here.  

Methane Opportunities for Vehicular Energy

The projects that comprise ARPA-E's MOVE Program, short for "Methane Opportunities for Vehicular Energy," are finding cost-effective ways to power passenger cars and other light-duty vehicles with America's abundant natural gas resources. Natural gas is currently less expensive than gasoline, and produces fewer harmful emissions than any other fossil fuel. Despite these advantages, significant technological and infrastructure barriers currently limit the use of natural gas as a major fuel source in the U.S. ARPA-E's MOVE projects are finding innovative ways to break through these barriers, creating practical and affordable natural gas storage tanks for passenger cars and quick-filling at-home refueling stations.
For a detailed technical overview about this program, please click here.  

Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles

Recent rapid advances in driver assistance technologies and the deployment of vehicles with increased levels of connectivity and automation have created multiple opportunities to improve the efficiency of future vehicle fleets beyond in new ways. The projects that make up ARPA-E's NEXTCAR Program, short for "NEXT-Generation Energy Technologies for Connected and Automated On-Road Vehicles," are enabling technologies that use connectivity and automation to co-optimize vehicle dynamic controls and powertrain operation, thereby reducing energy consumption of the vehicle. Vehicle dynamic and powertrain control technologies, implemented on a single vehicle basis, across a cohort of cooperating vehicles, or across the entire vehicle fleet, could significantly improve individual vehicle and, ultimately, fleet energy efficiency.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments. In response to ARPA-E's first open solicitation, more than 3,700 concept papers flooded into the new agency, which were thoroughly reviewed by a team of 500 scientists and engineers in just 6 months. In the end, 36 projects were selected as ARPA-E's first award recipients, receiving $176 million in federal funding.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind, solar, tidal and distributed generation, grid scale storage, power electronics, power grid system performance, vehicle efficiency, storage for electric vehicles, and alternative fuels and bio-energy.
For a detailed technical overview about this program, please click here.

Open Funding Solicitation

In 2018, ARPA-E issued its fourth open funding opportunity, designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received thousands of concept papers for OPEN 2018, which hundreds of scientists and engineers reviewed over the course of several months. ARPA-E selected 45 projects for its OPEN 2018 program, awarding them $112 million in federal funding. OPEN 2018 projects cut across ten technology areas: building efficiency, distributed generation, electrical efficiency, grid, grid storage, manufacturing efficiency, resource efficiency, transportation fuels, transportation energy conversion, and transportation vehicles.

Plants Engineered to Replace Oil

The 10 projects that comprise ARPA-E's PETRO program, short for "Plants Engineered to Replace Oil," aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.
For a detailed technical overview about this program, please click here. 

Robust Affordable Next Generation Energy Storage Systems

The projects that comprise ARPA-E's RANGE Program, short for "Robust Affordable Next Generation Energy Storage Systems," seek to develop transformational electrochemical energy storage technologies that will accelerate the widespread adoption of electric vehicles by dramatically improving their driving range, cost, and safety. RANGE focuses on four specific areas 1) aqueous batteries constructed using water to improve safety and reduce costs, 2) non-aqueous batteries that incorporate inherent protection mechanisms that ensure no harm to vehicle occupants in the event of a collision or fire, 3) solid-state batteries that use no liquids or pastes in their construction, and 4) multifunctional batteries that contribute to both vehicle structure and energy storage functions.
  For a detailed technical overview about this program, please click here.  

Range Extenders for Electric Aviation with Low Carbon and High Efficiency

The REEACH program objective is to develop a disruptive system to convert the chemical energy contained in energy-dense carbon neutral liquid fuels (CNLFs) into electric power for aircraft propulsion via electric powertrains and other key systems. With a developmental prototype as the ultimate goal, REEACH performers will work to create innovative, cost-effective and high-performance energy storage and power generation (ESPG) sub-systems. The developed ESPG system must deliver adequate electric power to propel a fully electric, narrow-body aircraft through all the various flight phases (i.e., taxi, take-off, climb, cruise, and descent) and store sufficient energy to power the entire aircraft during a long-range mission with adequate safety reserves. The developed ESPG should be efficient and light enough to enable operations commensurate with existing commercial single-aisle aircraft missions. In the design of their ESPG systems, applicants are given latitude to select the CNLF, system architecture, and individual component technologies. REEACH will develop the critical enabling components and sub-system architectures for high-efficiency conversion of CNLF energy into electricity with sufficient power density for aircraft propulsion.

Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids

Most liquid fuels used in transportation today are derived from petroleum and burned in internal combustion engines. These energy-dense fuels are currently economical, but they remain partially reliant on imported petroleum and are highly carbon intensive. Alternatives to internal combustion engines, like fuel cells, which convert chemical energy to electricity, have shown promise in vehicle powertrains, but are hindered by inefficiencies in fuel transport and storage. Projects in the Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids (REFUEL) program seek to develop scalable technologies for converting electrical energy from renewable sources into energy-dense carbon-neutral liquid fuels (CNLFs) and back into electricity or hydrogen on demand. REFUEL projects will accelerate the shift to domestically produced transportation fuels, improving American economic and energy security and reducing energy emissions.
For a detailed technical overview about this program, please click here.    

Reducing Emissions using Methanotrophic Organisms for Transportation Energy

The projects that comprise ARPA-E's REMOTE program, short for "Reducing Emissions using Methanotrophic Organisms for Transportation Energy," seek to enable highly efficient biological conversion of methane to liquid fuels for small-scale deployment. Specifically REMOTE focuses on improving the energy efficiency and carbon yield of biological routes from methane to a useable form for fuel synthesis while also examining high-productivity methane conversion processes and bioreactor technologies.
For a detailed technical overview about this program, please click here. 

Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management

The SMARTFARM program’s objective is to bridge the data gap in the biofuel supply chain by funding technologies that can quantify feedstock-related emissions at the field-level and enable new market incentives for efficiency in feedstock production and carbon management. The value of such technologies lies in their ability to reliably, accurately (i.e., low uncertainty), and cost-effectively quantify feedstock production life cycle emissions (in g CO2e/acre) at the field level (i.e., scalable to >80 acres).The SMARTFARM program is structured in two initial phases:1.      Phase 1 will establish open-source, high-resolution datasets to support testing and validating emerging monitoring technologies. These production sites will be outfitted with state-of-the-art equipment and monitored on a per-acre basis.2.      Phase 2 will fund technologies capable of delivering the same estimates, at or below specified uncertainty levels, at a cost capable of delivering a positive return on investment when field-level carbon emissions reductions are connected to associated biofuel carbon markets. The SMARTFARM program will subject Phase 2 technologies to rigorous testing to demonstrate performance in relevant deployment scenarios. Successful projects in this second phase of the program will be encouraged to partner with Phase 1 site managers to deploy and validate their technologies.

Pages

Subscribe to Transportation