Sorry, you need to enable JavaScript to visit this website.

Transportation

Cornell University

Engineering High-Energy Secondary Lithium Metal Batteries

Cornell University will develop a new type of rechargeable lithium metal battery that provides superior performance over existing lithium-ion batteries. The anode, or negative side of a lithium-ion battery, is usually composed of a carbon-based material. In lithium metal batteries, the anode is made of metallic lithium. While using metallic lithium could result in double the storage capacity, lithium metal batteries have unreliable performance, safety issues, and premature cell failure. There are two major causes for this performance degradation. First, side reactions can occur between the lithium metal and the liquid or solid electrolyte placed between the positive and negative electrodes. Second, when recharged, branchlike metal fibers called dendrites can grow on the negative electrode. These dendrites can grow to span the space between the negative and positive electrodes, causing short-circuiting. To overcome these challenges, Cornell proposes research to pair a variety of cathodes with a lithium metal anode. The work builds upon recent theoretical and experimental discoveries by the team, which show that a class of structured electrolytes can provide multiple mechanisms for stabilizing lithium metal anodes and suppress dendrite growth. The team will also develop structured electrolyte coatings that provide barriers to oxygen and moisture, but do not impede lithium-ion transport across the electrolyte/electrode interface. Such coatings will suppress the unwelcome lithium metal/electrolyte reactions and will also enable manufacturing of lithium metal batteries under standard dry room conditions. The structures developed could also be used in batteries based on other metals, such as sodium and aluminum that are more abundant and less expensive than lithium, but also affected by dendrite formation.

Coskata, Inc.

Activated Methane to Butanol

Coskata is engineering methanol fermentation into an anaerobic microorganism to enable a low-cost biological approach for liquid fuel production. Currently, the most well-known processes available to convert methane into fuel are expensive and energy-intensive. Coskata is constructing strains of the anaerobic bacteria to efficiently and cost-effectively convert activated methane to butanol, an alcohol that can be used directly as part of a fuel blend. Coskata's process involves molecular genetics to introduce and control specific genes, and to inactivate undesired pathways, together with fermentation optimization of constructed strains. Further, the team will work to increase the tolerance of these strains to high concentrations of butanol, an essential element of the technology.

Delphi Automotive Systems, LLC

Gallium-Nitride Advanced Power Semiconductor and Packaging

Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device's efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi's GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

Det Norske Veritas (U.S.A)

Sensor-Enhanced and Model-Validated Batteries for Energy Storage

DNV KEMA is testing a new gas monitoring system developed by NexTech Materials to provide early warning signals that a battery is operating under stressful conditions and at risk of premature failure. As batteries degrade, they emit low level quantities of gas that can be measured over the course of a battery's life-time. DNV KEMA is working with NexTech to develop technology to accurately measure these gas emissions. By taking accurate stock of gas emissions within the battery pack, the monitoring method could help battery management systems predict when a battery is likely to fail. Advanced prediction models could work alongside more traditional models to optimize the performance of electrical energy storage systems going forward. In the final phase of the project, DNV KEMA will build a demonstration in a community energy storage system with Beckett Energy Systems.

Donald Danforth Plant Science Center

A Reference Phenotyping System for Energy Sorghum

The Donald Danforth Plant Science Center, in collaboration with partners from seven institutions, proposes an integrated open-sourced phenotyping system for energy sorghum. Phenotyping is the assessment of observable plant traits, and is critical for breeding improvements. The team will develop a central repository for high quality phenotyping datasets, and make this resource available to other TERRA project groups and the wider community to stimulate further innovations. The team will collect data with their complete system that will include a number of components. First, the team will install, operate, and maintain a reference phenotyping field system that employs a bridge-like overhead structure with a moveable platform supporting sensing equipment, called the Scanalyzer, at the Maricopa Agricultural Center (MAC) at the University of Arizona. The Scanalyzer's advanced sensors will be used for automated high-throughput phenotyping to gather data from the energy sorghum in the field. Second, the project will combine field- and controlled-environment phenotyping. The controlled-environment facilities allow the team to more precisely manipulate environmental conditions and resolve complex dynamic interactions observed in the field. Third, plant and environment data gathered will be used to create computational solutions and predictive algorithms to improve the ability to predict phenotypes; increasing the ability to identify traits for improved biomass yield earlier in a plant's development. Collected data will also be used in the fourth component of the project, advancing our understanding of phenotype-to-genotype trait associations, determining which genes control observable traits in the sorghum. Some traits are largely determined by genes and others are largely determined by environmental factors; work in this project will help elucidate the differences. All of these components generate an incredible amount of data. An "Open Data" policy is central to the philosophy of the Danforth project. To ensure that this data is useful, the team will convene a standards committee selected in collaboration with the TERRA program to standardize phenotyping efforts between institutions. This sharing of standards, data, and open-source code will reduce redundancy, lower costs for researchers, allow for long-term curation, and unlock potential new innovations from entrepreneurs outside the TERRA community.

Donald Danforth Plant Science Center

Center for Enhanced Camelina Oil (CECO)

The Danforth Center will optimize light utilization in Camelina, a drought-resistant, cold-tolerant oilseed crop. The team is modifying how Camelina collects sunlight, engineering its topmost leaves to be lighter in color so sunlight can more easily reflect onto lower parts of the plant. A more uniform distribution of light would improve the efficiency of photosynthesis. Combined with other strategies to produce more oil in the seed, Camelina would yield more oil per plant. The team is also working to allow Camelina to absorb carbon dioxide (CO2) more efficiently, providing more carbon input for oil production. The goal is to improve light utilization and oil production to the point where Camelina produces enough fuel precursors per acre to compete with other fuels.

Eaton Corporation

Predictive Battery Management for Commercial Hybrid Vehicles

Eaton is developing advanced battery and vehicle systems models that will enable fast, accurate estimation of battery health and remaining life. The batteries used in hybrid vehicles are highly complex and require advanced management systems to maximize their performance. Eaton's battery models will be coupled with hybrid powertrain control and power management systems of the vehicle enabling a broader, more comprehensive vehicle management system for better optimization of battery life and fuel economy. Their design would reduce the sticker price of commercial hybrid vehicles, making them cost-competitive with non-hybrid vehicles.

Eaton Corporation

Highly Efficient, Near-Isothermal Liquid-Piston Compressor for Low Cost At-Home Natural Gas Refueling

Eaton is developing an at-home natural gas refueling system that relies on a liquid piston to compress natural gas. A traditional compressor uses an electric motor to rotate a crankshaft, which is tied to several metal pistons that pump to compress gas. Traditional compressor systems can be inefficient and their complex components make them expensive to manufacture, difficult to maintain, and short-lived. Eaton's system replaces traditional pistons with a liquid that comes into direct contact with the natural gas without the need for the costly high-pressure piston seals that are used in conventional gas compression.

Electron Energy Corporation

Solid State Processing of Fully Dense Anisotropic Nanocomposite Magnets

EEC and its team are developing a new processing technology that could transform how permanent magnets found in today's EV motors and renewable power generators are fabricated. This new process, known as friction consolidation extrusion (FC&E), could produce stronger magnets at a lower cost and with reduced rare earth mineral content. The advantage of FC&E over today's best fabrication processes is that it can be applied to unconsolidated powders as opposed to solid alloys, which can allow magnets to be compacted from much smaller grains of two different types, a process which could double its magnetic energy density. EEC's process could reduce the need for rare earth mineral in permanent magnets by as much 30%.

Envia Systems

High Energy Density Lithium Batteries

In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today's technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia's batteries exhibit world-record energy densities.

EnZinc, Inc.

Rechargeable Dendrite-Free 3D Zinc Sponge Anode

EnZinc is developing a low-cost battery using 3D zinc microstructured sponge technology that could dramatically improve the rechargeability of zinc-based EV batteries. As a battery material, zinc is inexpensive and readily available, but presently unsuitable for long-term use in EVs. Current zinc based batteries offer limited cycle life due to the formation of tree-like internal structures (dendrites) that can short out the battery. To address this, EnZinc, in collaboration with the U.S. Naval Research Laboratory, will replace conventional zinc powder-bed anodes with a porous zinc sponge that thwarts formation of structures that lead to battery failure. EnZinc's technology will enable zinc-based batteries that accept high-power charge and discharge as required by EVs.

Evolva, Inc.

Renewable Platform for Production of Sesquiterpene Aviation Fuels & Fuel Additives from Renewable Feedstocks

Allylix (now Evolva) is producing terpenes--energy dense molecules that can be used as high-performance aviation fuels--from simple sugars using engineered microbes. These terpenes will provide better performance than existing petroleum-based aviation fuels. Allylix will draw upon their industrial-scale terpene manufacturing experience to produce aviation sesquiterpenes at a low cost and large scale. Going forward, Allylix will validate the performance of its aviation fuels in unmanned aerial vehicles (UAVs), and further engineer its process to utilize biomass feedstocks.

Exelus, Inc.

Upgrading Refinery Off-Gas to High-Octane Alkylate

Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus' process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

FastCAP Systems Corp.

Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

FastCAP is improving the performance of an ultracapacitor--a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density--high energy density means more energy storage. FastCAP is redesigning the ultracapacitor's internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP's ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor's electrode, increasing the overall efficiency and energy density of the device.

Fearless Fund

Ocean Energy from Macroalgae (OEM): Ranching Sargassum

Fearless Fund will lead a MARINER Category 1 project to design and develop a new system to enable large-scale macroalgae "ranching" using remote sensing, imaging, and modeling technologies. The core concept targets monitoring free-floating, low-impact Sargassum seaweed in the Gulf of Mexico for cost-effective biomass harvest. Fearless Fund's cultivation process is designed to mimic naturally occurring seaweed mats found at the surface of the ocean. The concept leverages the free-floating nature of Sargassum, reducing costs from labor, seeding, and harvesting normally associated with seaweed farming. Fearless Fund will investigate the potential to artificially "seed" circular currents found in the Gulf of Mexico with Sargassum cuttings. The team envisions that Sargassum could be ranched within Gulf currents, where it can grow to maturity at a predicted rate. The circular current transports the crop closer to shore at the projected time of harvest, which is calculated based on historical data. Remote sensing technologies will be used to monitor the crop over a three month cultivation season before harvesting the new crop with barges and tug boats after the uninterrupted initial growing period. By improving these methods and leveraging the wealth of data generated from a suite of sensors, the team hopes that industrial-scale farming of macroalgae can be achieved without capital-intensive infrastructure.

Ford Motor Company

Covalent and Metal-Organic Framework High-Capacity

ARPA-E and Ford agreed to mutually conclude this project. Ford is developing an on-board adsorbed natural gas tank system with a high-surface-area framework material that would increase the energy density of compressed natural gas at low pressures. Traditional natural gas tanks attempt to compensate for low-energy-density and limited driving range by storing compressed gas at high pressures, requiring expensive pressure vessels. Ford and their project partners will optimize advanced porous material within a system to reduce the pressure of on-board tanks while delivering the customer expected driving range. This porous material allows more gas to be stored inside a tank by utilizing a surface energy attraction to the natural gas. These materials would be efficiently and cost-effectively integrated into a natural gas vehicle system that will promote and contribute to the widespread use of natural gas vehicles.

Ford Motor Company

High-Precision Tester for Automotive and Stationary Batteries

Ford is developing a commercially viable battery tester with measurement precision that is significantly better than today's best battery testers. Improvements in the predictive ability of battery testers would enable significant reductions in the time and expense involved in electric vehicle technology validation. Unfortunately, the instrumental precision required to reliably predict performance of batteries after thousands of charge and discharge cycles does not exist in today's commercial systems. Ford's design would dramatically improve the precision of electric vehicle battery testing equipment, which would reduce the time and expense required in the research, development, and qualification testing of new automotive and stationary batteries.

FuelCell Energy, Inc.

Protonic Ceramics for Energy Storage and Electricity Generation with Ammonia

FuelCell Energy will develop an advanced solid oxide fuel cell system capable of generating ammonia from nitrogen and water, and renewable electricity. The unique design will also allow the system to operate in reverse, by converting ammonia and oxygen from air into electricity. A key innovation in this project is the integration of proton-conducting ceramic membranes with new electride catalyst supports to enable an increase in the rate of ammonia production. Combining their catalyst with a calcium-aluminate electride support increases the rate of ammonia formation by reducing coverage of the catalyst surface by hydrogen and allowing the nitrogen to use all of the catalyst area for reactions. The modular nature of this system allows for its deployment closer to the point of use at agricultural and industrial sites, working to both produce ammonia for immediate or delayed use and to use the ammonia to generate electricity after it has been transported to population centers.

Gas Technology Institute

Nano-Valved Adsorbents for CH4 Storage

GTI is developing a natural gas tank for light-duty vehicles that features a thin, tailored shell containing microscopic valves which open and close on demand to manage pressure within the tank. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture. GTI's tank design uses unique adsorbent pellets with nano-scale pores surrounded by a coating that functions as valves to help manage the pressure of the gas and facilitate more efficient storage and transportation. GTI's low-pressure tanks would have thinner walls than today's best alternatives, resulting in a lighter, more affordable product with increased storage capacity.

Gas Technology Institute

A Novel Catalytic Membrane Reactor for DME Synthesis from Renewable Resources

The Gas Technology Institute will develop a process for producing dimethyl ether (DME) from renewable electricity, air, and water. DME is a clean-burning fuel that is easily transported as a liquid and can be used as a drop-in fuel in internal combustion engines or directly in DME fuel cells. Ultimately carbon dioxide (CO2) would be captured from sustainable sources, such as biogas production, and fed into a reactor with hydrogen generated from high temperature water splitting. The CO2 and hydrogen react on a bifunctional catalyst to form methanol and a subsequently DME. To improve conversion to DME, GTI will use a novel catalytic membrane reactor with a zeolite membrane. This reactor improves product yield by shifting thermodynamic equilibrium towards product formation and decreases catalyst deactivation and kinetic inhibition due to water formation. The final DME product is separated and the unreacted chemicals are recycled back to the catalytic reactor. Each component of the process is modular, compact, and requires no additional inputs aside from water, CO2, and electricity, while the entire system is designed from the ground up to be compatible with intermittent renewable energy sources.

Pages

Subscribe to Transportation