Sorry, you need to enable JavaScript to visit this website.

Transportation Fuels

Microorganisms for Liquid Transportation Fuel

ARPA-E's Electrofuels program is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on electrofuels.
For a detailed technical overview about this program, please click here.  

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
  For a detailed technical overview about this program, please click here.  

Innovative Development in Energy-Related Applied Science

The IDEAS program - short for Innovative Development in Energy-Related Applied Science - provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS awards may also support proof-of-concept research to develop a unique technology concept, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. This program identifies potentially disruptive concepts in energy-related technologies that challenge the status quo and represent a leap beyond today's technology. That said, an innovative concept alone is not enough. IDEAS projects must also represent a fundamentally new paradigm in energy technology and have the potential to significantly impact ARPA-E's mission areas.

Macroalgae Research Inspiring Novel Energy Resources

The projects that comprise ARPA-E's MARINER (Macroalgae Research Inspiring Novel Energy Resources) program seek to develop the tools to enable the United States to become a global leader in the production of marine biomass. Presently, macroalgae, or seaweed, is primarily used as food for human consumption, but there is a growing opportunity for the production of macroalgae for use as feedstock for fuels and chemicals, as well as animal feed. ARPA-E estimates the United States has suitable conditions and geography to produce at least 500 million dry metric tons of macroalgae per year. Such production volumes could yield about 2.7 quadrillion BTUs (quads) of energy in the form of liquid fuel, roughly 10% of the nation's annual transportation energy demand.MARINER project teams will develop technologies capable of providing economically viable, renewable biomass for energy applications without the need for land, fresh water, and synthetic fertilizers. Such technologies include integrated cultivation and harvesting systems, advanced component technologies, computational modeling tools, aquatic monitoring tools, and advanced breeding and genetic tools. Successful technologies must help greatly reduce the capital and operational expenses related to macroalgae production and enable significant increases in farm size and potential areas of deployment.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments. In response to ARPA-E's first open solicitation, more than 3,700 concept papers flooded into the new agency, which were thoroughly reviewed by a team of 500 scientists and engineers in just 6 months. In the end, 36 projects were selected as ARPA-E's first award recipients, receiving $176 million in federal funding.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind, solar, tidal and distributed generation, grid scale storage, power electronics, power grid system performance, vehicle efficiency, storage for electric vehicles, and alternative fuels and bio-energy.
For a detailed technical overview about this program, please click here.

Open Funding Solicitation

In 2018, ARPA-E issued its fourth open funding opportunity, designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received thousands of concept papers for OPEN 2018, which hundreds of scientists and engineers reviewed over the course of several months. ARPA-E selected 45 projects for its OPEN 2018 program, awarding them $112 million in federal funding. OPEN 2018 projects cut across ten technology areas: building efficiency, distributed generation, electrical efficiency, grid, grid storage, manufacturing efficiency, resource efficiency, transportation fuels, transportation energy conversion, and transportation vehicles.

Plants Engineered to Replace Oil

The 10 projects that comprise ARPA-E's PETRO program, short for "Plants Engineered to Replace Oil," aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.
For a detailed technical overview about this program, please click here. 

Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids

Most liquid fuels used in transportation today are derived from petroleum and burned in internal combustion engines. These energy-dense fuels are currently economical, but they remain partially reliant on imported petroleum and are highly carbon intensive. Alternatives to internal combustion engines, like fuel cells, which convert chemical energy to electricity, have shown promise in vehicle powertrains, but are hindered by inefficiencies in fuel transport and storage. Projects in the Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids (REFUEL) program seek to develop scalable technologies for converting electrical energy from renewable sources into energy-dense carbon-neutral liquid fuels (CNLFs) and back into electricity or hydrogen on demand. REFUEL projects will accelerate the shift to domestically produced transportation fuels, improving American economic and energy security and reducing energy emissions.
For a detailed technical overview about this program, please click here.    

Reducing Emissions using Methanotrophic Organisms for Transportation Energy

The projects that comprise ARPA-E's REMOTE program, short for "Reducing Emissions using Methanotrophic Organisms for Transportation Energy," seek to enable highly efficient biological conversion of methane to liquid fuels for small-scale deployment. Specifically REMOTE focuses on improving the energy efficiency and carbon yield of biological routes from methane to a useable form for fuel synthesis while also examining high-productivity methane conversion processes and bioreactor technologies.
For a detailed technical overview about this program, please click here. 

Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management

The SMARTFARM program’s objective is to bridge the data gap in the biofuel supply chain by funding technologies that can quantify feedstock-related emissions at the field-level and enable new market incentives for efficiency in feedstock production and carbon management. The value of such technologies lies in their ability to reliably, accurately (i.e., low uncertainty), and cost-effectively quantify feedstock production life cycle emissions (in g CO2e/acre) at the field level (i.e., scalable to >80 acres). The SMARTFARM program is structured in two initial phases: Phase 1 will establish open-source, high-resolution datasets to support testing and validating emerging monitoring technologies. These production sites will be outfitted with state-of-the-art equipment and monitored on a per-acre basis. Phase 2 will fund technologies capable of delivering the same estimates, at or below specified uncertainty levels, at a cost capable of delivering a positive return on investment when field-level carbon emissions reductions are connected to associated biofuel carbon markets. The SMARTFARM program will subject Phase 2 technologies to rigorous testing to demonstrate performance in relevant deployment scenarios. Successful projects in this second phase of the program will be encouraged to partner with Phase 1 site managers to deploy and validate their technologies.

Transportation Energy Resources from Renewable Agriculture

The TERRA program is facilitating improvement of advanced biofuel crops, specifically energy sorghum, by developing and integrating cutting-edge remote sensing platforms, complex data analytics tools, and high-throughput plant breeding technologies. Project teams are constructing automated systems to accurately measure and analyze crop growth in the field, thoroughly characterizing genetic potential and creating algorithms for selecting the best plants to reproduce. These innovations will accelerate domestic production of sustainable, renewable, and affordable liquid transportation fuels. The program will also generate the world's largest public reference database of sorghum plant characteristics and genetic composition that will facilitate research and development efforts across public and private sector institutions and in other important agricultural crops.
For a detailed technical overview about this program, please click here. 


Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops

Enzymes are required to break plant biomass down into the fermentable sugars that are used to create biofuel. Currently, costly enzymes must be added to the biofuel production process. Engineering crops to already contain these enzymes will reduce costs and produce biomass that is more easily digested. In fact, enzyme costs alone account for $0.50-$0.75/gallon of the cost of a biomass-derived biofuel like ethanol. Agrivida is genetically engineering plants to contain high concentrations of enzymes that break down cell walls. These enzymes can be "switched on" after harvest so they won't damage the plant while it's growing.

Algaeventure Systems

Scaling and Commercialization of Algae Harvesting Technologies

Led by CEO Ross Youngs, Algaeventure Systems (AVS) has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS's Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

Arcadia Biosciences

Vegetative Production of Oil in a C4 Crop

Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production.

Arizona State University

Mining Air for Fuels and Fine Chemicals (MAFF)

ASU will collect CO2 from air using a low-cost polymer membrane-based DAC process. The team will use water evaporation to drive to capture CO2, decrease emissions, and improve the energy efficiency of the overall carbon capture process. The project will use novel materials to create high-surface area membranes to continuously and actively pump CO2 against a concentration gradient. The process will capture distributed CO2 emissions that can be sequestered or converted into a wide range of energy-dense fuels, fuel feedstocks, or fine chemicals.

Arizona State University

Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

Arizona State University (ASU) is engineering a type of photosynthetic bacteria that efficiently produce fatty acids--a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids--overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU's approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.


Design of Metalloenzymes for Methane Activation

The team from Arzeda will use computational enzyme design tools and their knowledge of biological engineering and chemistry to create new synthetic enzymes to activate methane. Organisms that are capable of using methane as an energy and carbon source are typically difficult to engineer. To address this challenge, Arzeda will develop technologies essential to creating modular enzymes that can be used in other organisms. The team will combine computation enzyme design with experimental methods to improve enzyme activity and help direct methane more effectively into metabolism for fuel production. Arzeda's new enzymes could transform the way methane is activated, and would be more efficient than current chemical and biological approaches.

Bettergy Corp.

Low Temperature Ammonia Cracking Membrane Reactor for Hydrogen Generation

Bettergy will develop a catalytic membrane reactor to allow on-site hydrogen generation from ammonia. Ammonia is much easier to store and transport than hydrogen, but on-site hydrogen generation will not be viable until a number of technical challenges have been met. The team is proposing to develop a system that overcomes the issues caused by the high cracking temperature and the use of expensive catalysts. Bettergy proposes a low temperature, ammonia-cracking membrane reactor system comprised of a non-precious metal ammonia cracking catalyst and a robust composite membrane. A one-step cracking process will be used to convert ammonia into hydrogen and nitrogen, with the hydrogen passing through the selective membrane leaving only nitrogen as the byproduct. If the team is successful, the conversion efficiency will be higher than conventional methods because the hydrogen is removed from the system as it is being produced. The low-temperature reactor will provide greater reliability, ease of operation, and cost effectiveness to hydrogen fueling stations. The team's technology could also be applicable for stationary fuel cell systems and the semiconductor, metallurgy, chemical, aerospace, and telecommunications industries.


Subscribe to Transportation Fuels