Sorry, you need to enable JavaScript to visit this website.

Transportation Fuels

Bio Architecture Lab

Macroalgae Butanol

E. I. du Pont de Nemours & Company (DuPont) and Bio Architecture Lab are exploring the commercial viability of producing fuel-grade isobutanol from macroalgae (seaweed). Making macroalgae an attractive substrate for biofuel applications however, will require continued technology development. Assuming these developments are successful, initial assessments suggest macroalgae aquafarming in our oceans has the potential to produce a feedstock with cost in the same range as terrestrial-based substrates (crop residuals, energy crops) and may be the feedstock of choice in some locations. The use of macroalgae also diversifies the sources of U.S. biomass in order to provide more options in meeting demand for biofuels. The process being developed will use a robust industrial biocatalyst (microorganism) capable of converting macroalgal-derived sugars directly into isobutanol. Biobutanol is an advanced biofuel with significant advantages over ethanol, including higher energy content, lower greenhouse gas emissions, and the ability to be blended in gasoline at higher levels than ethanol without changes to existing automobiles or the fuel industry infrastructure. Butamax is currently commercializing DuPont's biobutanol fermentation technology that uses sugar and starch feedstocks.

Bio2Electric, LLC

Electrogenerative System for Co-Production of Green Liquid Fuels and Electricity from Methane

Bio2Electric is developing a small-scale reactor that converts natural gas into a feedstock for industrial chemicals or liquid fuels. Conventional, large-scale gas-to-liquid reactors are expensive and not easily scaled down. Bio2Electric's reactor relies on a chemical conversion and fuel cell technology resulting in fuel cells that create a valuable feedstock, as well as electricity. In addition, the reactor relies on innovations in material science by combining materials that have not been used together before, thereby altering the desired output of the fuel cell. The reactors can be efficiently built as modular units, therefore reducing the manufacturing costs of the reactor. Bio2Electric's small-scale reactor could be deployed in remote locations to provide electricity in addition to liquid fuel, increasing the utility of geographically isolated gas reserves.

Blackpak, Inc.

Container-Less Natural Gas Storage

Blackpak will use high-strength, high-surface-area carbon to develop a sorbent-based natural gas storage vessel in which the sorbent itself is the container, eliminating the external pressure vessel altogether. This design could store natural gas at comparable or lower weight and smaller size than conventional compressed gas tanks while reducing the pressure of the natural gas in the vehicle tank. By reducing tank pressure, the system will enable home vehicle refueling at greatly reduced complexity and cost, making these systems accessible to the general public. In addition, the container-less storage system can be easily formed into a range of shapes, allowing automobile designers to seamlessly integrate the natural gas storage into the vehicle design, without sacrificing passenger space.

C.A. Goudey & Associates

Autonomous Tow Vessels for Offshore Macroalgae Farming

The C.A. Goudey and Associates team will lead a MARINER Category 2 project to develop an autonomous marine tow vessel to enable deployment of large-scale seaweed farming systems. Essentially all marine transportation systems rely on manned vessels. These systems are labor-intensive and depend on boats and ships that are a poor match to the tasks associated with deployment and operations of large-scale seaweed farming systems. This project seeks to remove the costs and requirements of manned systems through the use of slow-moving, autonomous tow vessels. Such vessels will enable macroalgae farming systems over larger ocean areas by eliminating the schedule constraints of a manned vessel, and the misapplication of high-speed boats to towing. Once operational, autonomous vessels could be used for a number of farming tasks such as towing pre-seeded longlines to the farm, transporting harvested seaweed back to collection points, or relocation of critical marine infrastructure. Where manned activities are essential, farm personnel can return to shore while the products of their labor make the same journey at a slower pace and significantly lower costs. If successful, this towing solution can be integrated into complete macroalgae farming systems to reduce high operating costs attributable to fuel and labor.

California Institute of Technology

Mechanistic Explanation of Acoustic Wave Enhanced Catalysis (AWEC); An Opportunity for Catalytic Transformations With Greatly Reduced Energy Costs

The California Institute of Technology (Caltech) team is using first-principles reasoning (i.e. a mode of examination that begins with the most basic physical principles related to an issue and "builds up" from there) and advanced computational modeling to ascertain the underlying mechanisms that cause acoustic waves to affect catalytic reaction pathways. The team will first focus their efforts on two types of reactions for which there is strong experimental evidence that acoustic waves can enhance catalytic activity: Carbon Monoxide (CO) oxidation, and Ethanol decomposition. Armed with this new understanding, the team will suggest promising applications for acoustic wave enhanced catalysis to new reactions with large energy and emissions footprints, such as ammonia synthesis. As an ARPA-E IDEAS project, this research is at a very early stage. However, this novel approach to acoustic wave enhanced catalysis has the potential to improve energy and resource efficiency across broad swathes of the chemical, industrial, and other sectors of the economy.

Calysta Energy, Inc.

Novel Bioreactor Designs Based on High Mass Transfer Chemical Reactors for Methanotroph Fermentation

Calysta Energy will develop a new bioreactor technology to enable the efficient biological conversion of methane into liquid fuels. While reasonably efficient, Gas-to-liquid (GTL) conversion is difficult to accomplish without costly and complex infrastructure. Biocatalysts are anticipated to reduce the cost of GTL conversion. Calysta will address this by using computational fluid dynamics to model best existing high mass transfer bioreactor designs and overcome existing limitations. Calysta will make the newly developed technology available to the broader research community, which could help other research groups to quickly test and commercialize their methane conversion processes.

Catalina Sea Ranch, LLC

Design of Large Scale Macroalgae Systems

The Catalina Sea Ranch team will lead a MARINER Category 1 project to design an advanced giant kelp cultivation system for deployment on open ocean sites to assess their ability to produce economical and sustainable biomass for a future biofuels industry. The team plans to develop solutions to the main challenges facing macroalgae cultivation: scalability of seeding, cultivation, and harvest; survivability of the offshore installations; energy use and ecosystem impact; predictability of yield and quality of harvested biomass; and cost effectiveness. The effort will begin by optimizing macroalgae cultivation in the open ocean through site-specific adaption and techno-economic modeling of a proven offshore cultivation system. In collaboration with its commercial partners, the team will then use a direct seeding method, which deposits young plants onto specially designed substrates to save money and time during the hatchery and deployment phase. Additionally, the team's mechanical partial harvest technology, which allows the same plant to be cut multiple times, is expected to further reduce annual seeding costs compared to the state of the art systems.

Ceres, Inc.

High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry

Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can't grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

Chemtronergy, LLC.

Cost-effective, Intermediate-temperature Fuel Cell for Carbon-free Power Generation

Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs. To address these challenges, the team proposes to lower the operating temperature below 650°C and to develop anode, cathode, and electrolyte materials using a combination of advanced materials discovery, reaction kinetics modeling, and 3D printing technology for large-scale rapid prototyping. The team hopes to greatly reduce the cost of SOFC systems while providing a distributed power-generating option with high efficiency, long life, and a reduced carbon footprint.

Chromatin, Inc.

Plant-Based Sesquiterpene Biofuels

Chromatin will engineer sweet sorghum--a plant that naturally produces large quantities of sugar and requires little water--to accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatin's proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plants--similar to the way in which it currently stores sugar--and can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.

Clemson University

Breeding High Yielding Bioenergy Sorghum for the New Bioenergy Belt

Clemson University is partnering with Carnegie Mellon University (CMU), the Donald Danforth Plant Science Center, and Near Earth Autonomy to develop and operate an advanced plant phenotyping system, incorporating modeling and rapid prediction of plant performance to drive improved yield and compositional gains for energy sorghum. The team will plant and phenotype one of the largest sets of plant types in the TERRA program. Researchers will design and build two phenotyping platforms - an aerial sensor platform and a ground-based platform. The aerial platform, developed by Near Earth Autonomy, is a fast moving, autonomous helicopter outfitted with sensors that will collect image data from above. The ground platforms are customized robots from CMU that will drive between crop rows below the plant canopy and collect data using two distinct sensor suites. The first will use sophisticated cameras and imaging algorithms to develop detailed 3D models of individual plants and their canopy structure. The second will have the unique ability to directly contact the plant in order to systematically measure physical characteristics that were previously measured manually with labor-intensive, low-throughput methods. The team will use machine learning techniques to analyze the data gathered from the phenotyping systems and translate this into predictive algorithms for accelerated breeding of improved biofuel plants.

Colorado State University

Synthetic Gene Circuits to Enhance Production of Transgenic Bioenergy Crops

Colorado State University (CSU) is developing technology to rapidly introduce novel traits into crops that currently cannot be readily engineered. Presently, a limited number of crops can be engineered, and the processes are not standardized - restricting the agricultural sources for engineered biofuel production. More--and more diverse--biofuel crops could substantially improve the efficiency, time scale, and geographic range of biofuel production. CSU's approach would enable simple and efficient engineering of a broad range of bioenergy crops using synthetic biology tools to standardize their genetic modification.

Colorado State University

Root Genetics in the Field to Understand Drought Adaptation and Carbon Sequestration

Colorado State University (CSU) will develop a high-throughput ground-based robotic platform that will characterize a plant's root system and the surrounding soil chemistry to better understand how plants cycle carbon and nitrogen in soil. CSU's robotic platform will use a suite of sensor technologies to investigate crop genetic-environment interaction and generate data to improve models of chemical cycling of soil carbon and nitrogen in agricultural environments. The platform will collect information on root structure and depth, and deploy a novel spectroscopic technology to quantify levels of carbon and other key elements in the soil. The technology proposed by the Colorado State team aims to speed the application of genetic and genomic tools for the discovery and deployment of root traits that control plant growth and soil carbon cycling. Crops will be studied at two field sites in Colorado and Arizona with diverse advantages and challenges to crop productivity, and the data collected will be used to develop a sophisticated carbon flux model. The sensing platform will allow characterization of the root systems in the ground and lead to improved quantification of soil health. The collected data will be managed and analyzed through the CyVerse "big data" computational analytics platform, enabling public access to data connecting aboveground plant traits with belowground soil carbon accumulation.

Columbia University

Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

Columbia University is using carbon dioxide (CO2) from ambient air, ammonia--an abundant and affordable chemical--and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the system--creating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

Columbia University

Co-Generation of Fuels During Copper Bioleaching

The innovation lies in the exploitation of novel natural energy source: reduced metal deposits. The energy released during oxidation of these metals could be used to reduce CO2 into fuels and chemicals reducing petroleum usage.This proposed project fits within the Chemical-Chemical Area of Interest, as it involves the coupling of the oxidation of reduced minerals in the Earth's crust to the production of reduced carbon chemicals for fuel utilization. This addresses both of Mission Areas of ARPA-E as the co-generation of fuels during copper bioleaching will potentially reduce the import of energy from foreign sources, reduce greenhouse gas emissions, improve energy efficiency in the mining industry, and ensure that the U.S. maintains a lead in the development of this disruptive new technology.

Cornell University

High-Density Photobiorefineries with Optimized Light/CO2 Delivery and Product Extraction

Cornell University is developing a new photobioreactor that is more efficient than conventional bioreactors at producing algae-based fuels. Traditional photobioreactors suffer from several limitations, particularly poor light distribution, inefficient fuel extraction, and the consumption of large amounts of water and energy. Cornell's bioreactor is compact, making it more economical to grow engineered algae and collect the fuel the algae produces. Cornell's bioreactor also delivers sunlight efficiently through low-cost, plastic, light-guiding sheets. By distributing optimal amounts of sunlight, Cornell's design would increase efficiency and decrease water use compared to conventional algae reactors.

Cornell University

Engineering High-Energy Secondary Lithium Metal Batteries

Cornell University will develop a new type of rechargeable lithium metal battery that provides superior performance over existing lithium-ion batteries. The anode, or negative side of a lithium-ion battery, is usually composed of a carbon-based material. In lithium metal batteries, the anode is made of metallic lithium. While using metallic lithium could result in double the storage capacity, lithium metal batteries have unreliable performance, safety issues, and premature cell failure. There are two major causes for this performance degradation. First, side reactions can occur between the lithium metal and the liquid or solid electrolyte placed between the positive and negative electrodes. Second, when recharged, branchlike metal fibers called dendrites can grow on the negative electrode. These dendrites can grow to span the space between the negative and positive electrodes, causing short-circuiting. To overcome these challenges, Cornell proposes research to pair a variety of cathodes with a lithium metal anode. The work builds upon recent theoretical and experimental discoveries by the team, which show that a class of structured electrolytes can provide multiple mechanisms for stabilizing lithium metal anodes and suppress dendrite growth. The team will also develop structured electrolyte coatings that provide barriers to oxygen and moisture, but do not impede lithium-ion transport across the electrolyte/electrode interface. Such coatings will suppress the unwelcome lithium metal/electrolyte reactions and will also enable manufacturing of lithium metal batteries under standard dry room conditions. The structures developed could also be used in batteries based on other metals, such as sodium and aluminum that are more abundant and less expensive than lithium, but also affected by dendrite formation.

Coskata, Inc.

Activated Methane to Butanol

Coskata is engineering methanol fermentation into an anaerobic microorganism to enable a low-cost biological approach for liquid fuel production. Currently, the most well-known processes available to convert methane into fuel are expensive and energy-intensive. Coskata is constructing strains of the anaerobic bacteria to efficiently and cost-effectively convert activated methane to butanol, an alcohol that can be used directly as part of a fuel blend. Coskata's process involves molecular genetics to introduce and control specific genes, and to inactivate undesired pathways, together with fermentation optimization of constructed strains. Further, the team will work to increase the tolerance of these strains to high concentrations of butanol, an essential element of the technology.

Donald Danforth Plant Science Center

A Reference Phenotyping System for Energy Sorghum

The Donald Danforth Plant Science Center, in collaboration with partners from seven institutions, proposes an integrated open-sourced phenotyping system for energy sorghum. Phenotyping is the assessment of observable plant traits, and is critical for breeding improvements. The team will develop a central repository for high quality phenotyping datasets, and make this resource available to other TERRA project groups and the wider community to stimulate further innovations. The team will collect data with their complete system that will include a number of components. First, the team will install, operate, and maintain a reference phenotyping field system that employs a bridge-like overhead structure with a moveable platform supporting sensing equipment, called the Scanalyzer, at the Maricopa Agricultural Center (MAC) at the University of Arizona. The Scanalyzer's advanced sensors will be used for automated high-throughput phenotyping to gather data from the energy sorghum in the field. Second, the project will combine field- and controlled-environment phenotyping. The controlled-environment facilities allow the team to more precisely manipulate environmental conditions and resolve complex dynamic interactions observed in the field. Third, plant and environment data gathered will be used to create computational solutions and predictive algorithms to improve the ability to predict phenotypes; increasing the ability to identify traits for improved biomass yield earlier in a plant's development. Collected data will also be used in the fourth component of the project, advancing our understanding of phenotype-to-genotype trait associations, determining which genes control observable traits in the sorghum. Some traits are largely determined by genes and others are largely determined by environmental factors; work in this project will help elucidate the differences. All of these components generate an incredible amount of data. An "Open Data" policy is central to the philosophy of the Danforth project. To ensure that this data is useful, the team will convene a standards committee selected in collaboration with the TERRA program to standardize phenotyping efforts between institutions. This sharing of standards, data, and open-source code will reduce redundancy, lower costs for researchers, allow for long-term curation, and unlock potential new innovations from entrepreneurs outside the TERRA community.

Donald Danforth Plant Science Center

Center for Enhanced Camelina Oil (CECO)

The Donald Danforth Plant Science Center will optimize light utilization in Camelina, a drought-resistant, cold-tolerant oilseed crop. The team is modifying how Camelina collects sunlight, engineering its topmost leaves to be lighter in color so sunlight can more easily reflect onto lower parts of the plant. A more uniform distribution of light would improve the efficiency of photosynthesis. Combined with other strategies to produce more oil in the seed, Camelina would yield more oil per plant. The team is also working to allow Camelina to absorb carbon dioxide (CO2) more efficiently, providing more carbon input for oil production. The goal is to improve light utilization and oil production to the point where Camelina produces enough fuel precursors per acre to compete with other fuels.


Subscribe to Transportation Fuels