Sorry, you need to enable JavaScript to visit this website.

Transportation Fuels

Eaton Corporation

Highly Efficient, Near-Isothermal Liquid-Piston Compressor for Low Cost At-Home Natural Gas Refueling

Eaton is developing an at-home natural gas refueling system that relies on a liquid piston to compress natural gas. A traditional compressor uses an electric motor to rotate a crankshaft, which is tied to several metal pistons that pump to compress gas. Traditional compressor systems can be inefficient and their complex components make them expensive to manufacture, difficult to maintain, and short-lived. Eaton's system replaces traditional pistons with a liquid that comes into direct contact with the natural gas without the need for the costly high-pressure piston seals that are used in conventional gas compression.

Evolva, Inc.

Renewable Platform for Production of Sesquiterpene Aviation Fuels & Fuel Additives from Renewable Feedstocks

Evolva is producing terpenes--energy dense molecules that can be used as high-performance aviation fuels--from simple sugars using engineered microbes. These terpenes will provide better performance than existing petroleum-based aviation fuels. Evolva will draw upon their industrial-scale terpene manufacturing experience to produce aviation sesquiterpenes at a low cost and large scale. Going forward, Evolva will validate the performance of its aviation fuels in unmanned aerial vehicles (UAVs), and further engineer its process to utilize biomass feedstocks.

Exelus, Inc.

Upgrading Refinery Off-Gas to High-Octane Alkylate

Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus' process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

Fearless Fund

Ocean Energy from Macroalgae (OEM): Ranching Sargassum

Fearless Fund will lead a MARINER Category 1 project to design and develop a new system to enable large-scale macroalgae "ranching" using remote sensing, imaging, and modeling technologies. The core concept targets monitoring free-floating, low-impact Sargassum seaweed in the Gulf of Mexico for cost-effective biomass harvest. Fearless Fund's cultivation process is designed to mimic naturally occurring seaweed mats found at the surface of the ocean. The concept leverages the free-floating nature of Sargassum, reducing costs from labor, seeding, and harvesting normally associated with seaweed farming. Fearless Fund will investigate the potential to artificially "seed" circular currents found in the Gulf of Mexico with Sargassum cuttings. The team envisions that Sargassum could be ranched within Gulf currents, where it can grow to maturity at a predicted rate. The circular current transports the crop closer to shore at the projected time of harvest, which is calculated based on historical data. Remote sensing technologies will be used to monitor the crop over a three month cultivation season before harvesting the new crop with barges and tug boats after the uninterrupted initial growing period. By improving these methods and leveraging the wealth of data generated from a suite of sensors, the team hopes that industrial-scale farming of macroalgae can be achieved without capital-intensive infrastructure.

Ford Motor Company

Covalent and Metal-Organic Framework High-Capacity

ARPA-E and Ford Motor Company agreed to mutually conclude this project. Ford is developing an on-board adsorbed natural gas tank system with a high-surface-area framework material that would increase the energy density of compressed natural gas at low pressures. Traditional natural gas tanks attempt to compensate for low-energy-density and limited driving range by storing compressed gas at high pressures, requiring expensive pressure vessels. Ford and their project partners will optimize advanced porous material within a system to reduce the pressure of on-board tanks while delivering the customer expected driving range. This porous material allows more gas to be stored inside a tank by utilizing a surface energy attraction to the natural gas. These materials would be efficiently and cost-effectively integrated into a natural gas vehicle system that will promote and contribute to the widespread use of natural gas vehicles.

FuelCell Energy, Inc.

Protonic Ceramics for Energy Storage and Electricity Generation with Ammonia

FuelCell Energy will develop an advanced solid oxide fuel cell system capable of generating ammonia from nitrogen and water, and renewable electricity. The unique design will also allow the system to operate in reverse, by converting ammonia and oxygen from air into electricity. A key innovation in this project is the integration of proton-conducting ceramic membranes with new electride catalyst supports to enable an increase in the rate of ammonia production. Combining their catalyst with a calcium-aluminate electride support increases the rate of ammonia formation by reducing coverage of the catalyst surface by hydrogen and allowing the nitrogen to use all of the catalyst area for reactions. The modular nature of this system allows for its deployment closer to the point of use at agricultural and industrial sites, working to both produce ammonia for immediate or delayed use and to use the ammonia to generate electricity after it has been transported to population centers.

Gas Technology Institute

Nano-Valved Adsorbents for CH4 Storage

Gas Technology Institute (GTI) is developing a natural gas tank for light-duty vehicles that features a thin, tailored shell containing microscopic valves which open and close on demand to manage pressure within the tank. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture. GTI's tank design uses unique adsorbent pellets with nano-scale pores surrounded by a coating that functions as valves to help manage the pressure of the gas and facilitate more efficient storage and transportation. GTI's low-pressure tanks would have thinner walls than today's best alternatives, resulting in a lighter, more affordable product with increased storage capacity.

Gas Technology Institute

A Novel Catalytic Membrane Reactor for DME Synthesis from Renewable Resources

Gas Technology Institute (GTI) will develop a process for producing dimethyl ether (DME) from renewable electricity, air, and water. DME is a clean-burning fuel that is easily transported as a liquid and can be used as a drop-in fuel in internal combustion engines or directly in DME fuel cells. Ultimately carbon dioxide (CO2) would be captured from sustainable sources, such as biogas production, and fed into a reactor with hydrogen generated from high temperature water splitting. The CO2 and hydrogen react on a bifunctional catalyst to form methanol and a subsequently DME. To improve conversion to DME, GTI will use a novel catalytic membrane reactor with a zeolite membrane. This reactor improves product yield by shifting thermodynamic equilibrium towards product formation and decreases catalyst deactivation and kinetic inhibition due to water formation. The final DME product is separated and the unreacted chemicals are recycled back to the catalytic reactor. Each component of the process is modular, compact, and requires no additional inputs aside from water, CO2, and electricity, while the entire system is designed from the ground up to be compatible with intermittent renewable energy sources.

Gas Technology Institute

Methane to Methanol Fuel: A Low Temperature Process

Gas Technology Institute (GTI) is developing a new process to convert natural gas or methane-containing gas into methanol and hydrogen for liquid fuel. Methanol serves as the main feedstock for dimethyl ether, which could be used for vehicular fuel. Unfortunately, current methods to produce liquid fuels from natural gas require large and expensive facilities that use significant amounts of energy. GTI's process uses metal oxide catalysts that are continuously regenerated in a reactor, similar to a battery, to convert the methane into methanol. These metal oxide catalysts reduce the energy required during the conversion process. This process operates at room temperature, is more energy efficient, and less capital-intensive than existing methods.

Gas Technology Institute

Commercial Prototype Adsorbed Natural Gas (ANG) System for Light-Duty Vehicles

Gas Technology Institute (GTI) will partner with Northwestern University, NuMat Technologies, a Northwestern start-up company, and Westport Fuel Systems to identify materials with the best characteristics for low-pressure natural gas storage. The gas-storing materials, known as metal organic framework (MOF) adsorbents, hold natural gas the way a sponge holds liquids. The project team will further develop their computer modeling and screening technique to support the creation of a low-pressure adsorbent material specifically designed for natural gas vehicles. The team will also validate the materials properties in real-world conditions. Low-pressure gas tanks represent significant potential for lowering not only the cost of NGVs, but also the cost of fueling by reducing the need to compress the gas.

Gas Technology Institute

Methane Soft Oxidation

Gas Technology Institute (GTI) will develop a sulfur-based methane oxidation process, known as soft oxidation, to convert methane into liquid fuels and chemicals. Current gas-to-liquid technology for converting methane to liquid hydrocarbons requires massive scale to achieve economic production. The large plant size makes this approach unsuitable to address the challenge of distributed methane emissions. Soft oxidation is a method better suited to address this challenge because of its modular nature. It also addresses a major limitation of conventional gas-to-liquid technology: the irreversible conversion of methane and oxygen to carbon dioxide. In this project, GTI will demonstrate and optimize a two-step methane soft oxidation process and develop a fully integrated system that converts methane to liquid hydrocarbons, recovers the valuable liquids and hydrogen gas, and recycles the remaining products. A key difference with traditional oxygen-based approaches is that GTI's method allows for some hydrogen recovery, whereas in oxygen-based approaches the hydrogen must be consumed completely. Soft oxidation has a higher efficiency because of this, and it lacks the need for complex heat integration and recovery methods that require large scale plants. If successful, this new process could provide an economic pathway to significantly reduce methane emissions through on-site conversion.

General Electric

Chilled Natural Gas

General Electric (GE) Global Research is developing a low-cost, at-home natural gas refueling system that reduces fueling time and eliminates compression stages. Traditional compressor-based natural gas refueling systems require removal of water from natural gas through complicated desiccant cycles to avoid damage. GE's design uses a chiller to cool the gas to a temperature below -50°C, which would separate water and other contaminants from the natural gas. This design has very few moving parts, will operate quietly, and will be virtually maintenance-free. This simplified, compressor-free design could allow fast refueling at 10% of the cost of today's systems.

Giner Inc.

High-Efficiency Ammonia Production from Water and Nitrogen

Giner will develop advanced membrane and catalysts electrolyzer components that can electrochemically generate ammonia using water, nitrogen and intermittent renewable energy sources. Their electrochemical reactor operates at a much lower pressure and temperature than conventional methods, which can lead to significant energy savings. Some of their key innovations include metal nitride catalysts and high temperature poly(aryl piperidinium) anion exchange membranes (AEM) to boost the ammonia production rate and enhance process stability. The components will be integrated into Giner's existing water electrolysis platform to maximize the overall system efficiency. The project team has a diverse set of expertise which it will use to develop advanced catalysts and membranes; to integrate a water electrolyzer that can be easily manufactured; and to perform a techno-economic analysis that addresses the use of renewable energy sources. When completed, the system will decrease ammonia production capital and operating costs significantly compared to conventional processes.

Ginkgo Bioworks

Engineering E. coli as an Electrofuels Chassis for Isooctane Production

Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn't naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

GreenLight Biosciences, Inc.

Highly Productive Cell-Free Bioconversion of Methane

GreenLight Biosciences is developing a cell-free bioreactor that can convert large quantities of methane to fuel in one step. This technology integrates biological and chemical processes into a single process by separating and concentrating the biocatalysts from the host microorganisms. This unique "cell-free" approach is anticipated to improve the productivity of the reactor without increasing cost. GreenLight's system can be erected onsite without the need for massive, costly equipment. The process uses natural gas and wellhead pressure to generate the power needed to run the facility. Any carbon dioxide that is released in the process is captured, condensed and pumped back into the well to maintain reservoir pressure and reduce emissions. This technology could enable a scalable, mobile facility that can be transported to remote natural gas wells as needed.

Harvard University

Engineering a Bacterial Reverse Fuel Cell

Harvard University is engineering a self-contained, scalable electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel--making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they're pumped out of the tank.

Harvard University

Mining the Deep Sea for Microbial Ethano- and Propanogenesis

Hi Fidelity Genetics LLC

Non-Invasive Field Phenotyping Device for Plant Roots

Hi Fidelity Genetics will develop a low-cost device to measure the characteristics of plant roots and the environmental conditions that affect their development. Their device, called the "RootTracker," is a cylindrical, cage-like structure equipped with sensors on the rings of the cage. Before a seed is planted, farmers can push or twist the RootTracker directly into the soil. A seed is then planted at the top of the cage, allowing the plant to grow naturally while sensors accurately measure root density, growth angles, and growth rates, while having minimal impact on the growth of the plant. The prototype includes additional sensors attached to a removable, reusable rod to monitor environmental conditions. Data gathered by the device can be transmitted wirelessly or recorded internally using a low-cost microcontroller charged by solar power. The main technical challenge is automatically adjusting the calibration of the sensors, which are affected by soil type, soil moisture, and other environmental conditions that can disrupt the signal produced by the sensor. Another challenge is to distinguish between different types of biological matter. The team will also develop software for processing the data generated by the device and conduct laboratory and field tests to assess the performance of the prototype. Data collected by the device will help breeders further optimize root system architecture, which should lead to more energy-efficient crop varieties.

Iowa State University

Scalable Reactor Designs for Catalytic Autothermal Pyrolysis

Iowa State University (ISU) will develop a catalytic autothermal pyrolysis (CAP) process for the production of aromatics and olefins that refiners blend into transportation fuels. Pyrolysis is the decomposition of substances by heating - the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee beans. Traditionally, energy for pyrolysis is provided through indirect heat exchange, employing high temperature heat exchangers within reactors or conveying hot solids into reactors with the feedstock. This approach complicates the design and operation of reactors and requires a separate combustor to burn char, coke, or other fuel to generate the thermal energy. The ISU team plans to use an autothermal fluidized bed reactor, a specialized reactor where a gas is passed through solid granular material at high velocity. Air is used as the fluidizing gas to promote direct, partial combustion of biomass and pyrolysis products to supply the energy required for endothermic operation. This will replace indirect heating methods with direct heating within the reactor, simplifying the design and reducing capital cost while increasing throughput, improving catalyst life, and achieving product yield and quality similar to or greater than current processes. The team seeks to demonstrate CAP in the laboratory and pilot-scale reactors; identify optimal CAP operating conditions to maximize the yield of hydrocarbons; and develop engineering scaling relationships for CAP reactors to facilitate the design of commercial-scale CAP reactors.

Iowa State University

A Genetically Tractable Microalgal Platform for Advanced Biofuel Production

Iowa State University (ISU) is genetically engineering a species of aquatic microalgae called Chlamydomonas for more energy efficient conversion of sunlight and carbon dioxide to biofuels. Current microalgae genetic technologies are imprecise and hinder the rapid engineering of a variety of desirable traits into Chlamydomonas. In the absence of genetic engineering, it remains unlikely that current microalgae technologies for biofuel production will be able to economically compete with traditional fossil fuels. ISU is developing a portfolio of technologies for rapid genetic modification and breeding that will enable greater flexibility for genetic modification on a routine basis. The ISU project will optimize microalgae breeding and genetic engineering to develop efficient, large-scale industrial biofuel production.


Subscribe to Transportation Fuels