Sorry, you need to enable JavaScript to visit this website.

Transportation Fuels

Research Triangle Institute

Innovative Renewable Energy-based Catalytic Ammonia Production

Research Triangle Institute (RTI) will develop a catalytic technology for converting renewable energy, water, and air into ammonia. Their work focuses on three innovations: the development of an ammonia synthesis catalyst for improved reactions, refinement of the ammonia synthesis to handle intermittent loads, and optimized and scalable technologies for air separation to produce high-purity nitrogen. Their ammonia synthesis catalyst features increased surface area, high dispersion, and high thermal stability - enabling the system to operate at much lower temperatures and pressures, lowering energy consumption by 35%. It also reduces the balance of plant costs by simplifying the design and decreasing refrigeration loads. By using low-cost nitrogen purification techniques, they aim to lower the cost and amount of nitrogen required. When completed, the project will result in a small-scale ammonia synthesis system that is economically viable and can start and stop in synchronization with intermittent renewable power sources.

SAFCell, Inc.

Distributed Electrochemical Production and Conversion of Carbon-Neutral Ammonia

SAFCell will develop a novel electrochemical system that converts ammonia to hydrogen. The key innovation is the use of a solid acid electrolyte, a type of electrolyte that is stable in the presence of ammonia while under the operating conditions needed for reactions. Solid acid fuel cell stacks operate at intermediate temperatures (around 250°C) and demonstrate high tolerances to typical anode catalyst poisons such as carbon monoxide and hydrogen sulfide without a significant decrease in performance. The system also aims to realize the conversion of ammonia along with the purification and compression of hydrogen in a single, cost-effective system, thus greatly simplifying the infrastructure required to transport and store hydrogen. These properties give solid acid fuel cell devices advantages over other fuel cell technologies in cost, durability, start/stop cycling, fuel flexibility, and simplified system design.

Skyre, Inc.

Electricity From an Energy-Dense Carbon-Neutral Energy Carrier

Skyre will develop a system to capture carbon dioxide (CO2) emitted from industrial or chemical processes, electrochemically convert it into methanol, and further transform the methanol into dimethyl ether (DME). DME can be stored and transported using existing infrastructure and can be converted into electricity to provide power for transportation and distributed energy generation. To convert CO2 to methanol, new catalysts that improve efficiency and lower costs will be developed that are highly selective and durable, building on the team's prior work with transition-metal-supported catalysts. The CO2 reduction technology is designed to be modular and scalable. The system does not require a continuous supply of power and can, therefore, use intermittent renewable energy sources. These technologies offer a path to better utilize domestic resources, providing long-term energy storage from wind and solar, and long-distance energy delivery from remote locations.

Space Orbital Services

Low Temperature Methane Conversion Through Impacting Common Alloy Catalysts

Space Orbital Services, in conjunction with SRI International, proposes to conduct laboratory-based, small-scale research to develop a methane conversion technology that employs unconventional chemistry at relatively low temperature, based on impacting a common alloy catalyst. The project uses laboratory experiments to establish, measure and refine operational parameters including conversion rates and efficiency, reaction products, and reactor design.

Starfire Energy

Ammonia Synthesis for Fuel, Energy Storage, and Agriculture Applications

The team led by Starfire Energy will develop a modular, small-scale, HB-type process for ammonia synthesis. The team's innovative approach is less energy-intensive and more economical than conventional, large-scale HB because a novel electroactive catalyst allows operation at lower temperatures and pressures. Their approach combines a high-activity precious metal catalyst and an electroactive catalyst support to form ammonia molecules, while operating at moderate pressures and using localized high-temperature reaction zones. The extreme reaction conditions in conventional HB require that the process runs continuously, as turning on and off would require bringing the reactor back up to synthesis temperature. Since Starfire's process is smaller scale, it does not require continuous energy input and therefore could be compatible with intermittent energy sources, setting it on a path to be carbon-neutral.

Storagenergy Technologies, Inc.

High Rate Ammonia Synthesis by Intermediate Temperature Solid-State Alkaline Electrolyzer 

Storagenergy Technologies will develop a solid-state electrolyzer that uses nitrogen or air for high-rate ammonia production. Current electrolyzer systems for ammonia production have several challenges. Some use acidic membranes that can react with ammonia, resulting in lower conductivity and reduced membrane life. Operation at conventional low temperatures (<100°C) traditionally have low rates of reactions, while those that operate at high temperatures (>500°C) have long-heating processes that make them less practical for intermittent operation using renewable energy. The Storagenergy team has chosen a system that operates at an intermediate temperature (100-300°C) and uses an alkaline membrane environment to minimize side-reactions with the ammonia. To develop their technology, the team will combine a low-cost solid-state hydroxide conducting membrane, a nanostructured cathode catalyst, and a noble metal-free nanoparticle catalyst on the anode. This proposed system will synthesize ammonia more efficiently and at much lower temperatures and pressures than traditional ammonia production techniques. The modular nature of the system will also allow it to be deployed near the point of use.

Sun Catalytix

Affordable Energy from Water and Sunlight

Sun Catalytix is developing wireless energy-storage devices that convert sunlight and water into renewable fuel. Learning from nature, one such device mimics the ability of a tree leaf to convert sunlight into storable energy. It is comprised of a silicon solar cell coated with catalytic materials, which help speed up the energy conversion process. When this cell is placed in a container of water and exposed to sunlight, it splits the water into bubbles of oxygen and hydrogen. The hydrogen and oxygen can later be recombined to create electricity, when the sun goes down for example. The Sun Catalytix device is novel in many ways: it consists primarily of low-cost, earth-abundant materials where other attempts have required more expensive materials like platinum. Its operating conditions also facilitate the use of less costly construction materials, whereas other efforts have required extremely corrosive conditions.

Syzygy Plasmonics Inc

Photocatalytic Ammonia Decomposition for Hydrogen Production

Syzygy Plasmonics will develop a system that uses light to catalyze reactions inside a traditional chemical reactor. The team will construct a reactor that can be used for small-to-medium-scale generation of fuel cell quality hydrogen from ammonia, to be incorporated into existing infrastructures like hydrogen refueling stations for fuel cell vehicles. By using light instead of heat to drive the ammonia decomposition, the reactor can keep temperatures much lower, which reduces energy consumption, carbon emissions, and operational and capital costs while enhancing flexibility.

Texas A&M Agrilife Research

Automated TERRA Phenotyping System for Genetic Improvement of Energy Crops

Texas A&M University, along with Carnegie Melon University (CMU), will develop a rugged robotic system to measure characteristics of sorghum in the field. Traditionally this type of data collection is performed manually and often can only be collected when the crop is harvested. The team from CMU will create an automated gantry system with a plunging sensor arm to characterize individual plants in the field. The sensor arm of the gantry system allows the team to collect data not only from above, but to descend into the canopy and take measurements within. The team will utilize machine learning algorithms to interpret the field data and correlate them to plant phenotypes, molecular markers, and genes of interest linked to the field phenotypes. TAMU will incorporate this technology into its world class sorghum breeding program to increase the rate of genetic improvement.

Texas A&M Agrilife Research

Synthetic Crop for Direct Biofuel Production through Re-Routing the Photosynthesis Intermediates and Engineering Terpenoid Pathways

Texas A&M Agrilife Research is addressing one of the major inefficiencies in photosynthesis, the process by which plants convert sunlight into energy. Texas A&M Agrilife Research is targeting the most wasteful step in photosynthesis by redirecting a waste byproduct into a new pathway that will create terpenes--energy-dense fuel molecules that can be converted into jet or diesel fuel. This strategy will be first applied to tobacco to demonstrate more efficient terpene production in the leaf. If successful in tobacco, the approach will be translated into the high biomass plant Arundo donax (giant cane) for fuel production.

Texas A&M Agrilife Research

Developing ground penetrating radar (GPR) for enhanced root and soil organic carbon imaging: Optimizing bioenergy crop adaptation and agro-ecosystem services

Texas A&M AgriLife Research will develop ground penetrating radar (GPR) antenna arrays for 3D root and soil organic carbon imaging and quantification. Visualization of root systems with one mm resolution in soils could enable breeders to select climate-resilient bioenergy crops that provide higher yields, require fewer inputs, improve soil health, and promote carbon sequestration. Texas A&M will create a GPR system that will collect real-time measurements using a deployable robotic platform. The GPR system will collect data comparing annual energy sorghum to perennial species, which have great potential to deposit and store carbon in the soil. Texas A&M's primary focus is to complement the selection of high biomass feedstock crops by providing valuable data about the root architecture. This data could improve understanding of the soil ecosystem and ultimately allow for improved bioenergy crop productivity.

Trophic, LLC.

Continuous, High-Yield Kelp Production

Trophic will lead a MARINER Category 1 project to design and develop a seaweed cultivation system anticipated to maximize biomass yield while reducing costs. Trophic's system will rely on development of a number of innovations to increase the production of seaweed-based biomass. First, they will implement a variable-row spacing cultivation system to maximize the capital efficiency of the farm. Seaweed is traditionally grown on multiple parallel long culture ropes. Trophic's concept will explore the capability to dynamically vary the distance between each line to maximize the sustainable yield over the entire farm area across all stages of seaweed growth -- the culture ropes are kept closer together when the plants are small, while expanding as the plants grow. This reduces crowding and shading that could lead to slower growth rates. The second innovation is to design a passively tethered hydrofoil powered by solar energy. Higher concentrations of nutrients exist in deeper ocean depths. The hydrofoil, positioned deep below the surface and tethered to a buoy, lifts nutrients from deeper water to fertilize crops at the surface. A third innovation is their wave-diving system. Large waves pose a consistent danger in unprotected offshore environments. The wave-diving system acts as a brake against the upward movement of the culture ropes, capping the maximum structural loads from waves, thus allowing the system to survive much heavier sea states than otherwise possible. The team plans to combine these innovations with computer modeling to develop a system for seaweed farming that, if successful, will produce high yields at a cost of less than $60 per dry metric ton.

University of Alaska Fairbanks

Development of Scalable Coastal and Offshore Macroalgal Farming

The University of Alaska Fairbanks will lead a MARINER Category 1 project to design and develop replicable model farms capable of cost-effective production of sugar kelp, a type of macroalgae suitable for large-scale cultivation is U.S. ocean waters. Much of the cost of kelp farms is related to expensive anchor components, and the laborious process of installing and planting individual longlines between opposing anchors. Another 20% of the cost is ascribed to the harvest process and transport. The team plans innovations to reduce both equipment and operating costs. First, the team will implement a two-point mooring system, anchoring the longline superstructure to only two opposite anchors. Two-point moorings will reduce project costs, and they will allow the superstructure to be more easily lowered to avoid damaging storms or to take advantage of cooler water temperatures or additional nutrients available at lower depths. The reduced complexity of their proposed design also allows the deployment of an entire 1 hectare farm in less than a day. The team seeks to integrate the entire farming process, including seed production, outplanting, grow-out, harvest, and re-seeding. A particular emphasis will be on the development of cost-effective harvesting methods based on technologies applied in the commercial fishing industry. Test deployments for the integrated system are planned for locations in Alaska and New England. Additionally, team members working in Alaska will investigate the potential for "ultra" long-line systems of greater than 1 km in length. These systems may be exceptionally well suited for deployment in the protected waters of the expansive Alaska coastline.

University of California - Irvine

MacroAlgae Cultivation Modeling System (MACMODS)

The University of California, Irvine (UC Irvine) will lead a MARINER Category 3 team to develop a flexible macroalgae cultivation modeling system that integrates an open-source regional ocean model with a fine-scale hydrodynamic model capable of simulating forces and nutrient flows in various farming systems. Macroalgae farming systems will require significant capital. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production within the context of specific ocean regions. The UC Irvine team expects to provide an improved set of tools for locating optimal macroalgae farm sites, evaluating farm designs for structural soundness under rough ocean conditions, assessing new macroalgae cultivation techniques and operational procedures to maximize productivity. Their model will be capable of resolving turbulent fluxes within a canopy and hydrodynamic stresses on structures at sub-meter resolution. It will also feature a macroalgae growth model that accounts for biological processes such as the enhancement of nutrient uptake due to the motion of the plant canopy and waves. Once completed, the modeling tool will be able to assess optimal sites for macroalgae farms on the U.S. West coast, while guiding operational decisions to maximize yield. The tool will also evaluate the productivity and structural performance of a range of macroalgae farm designs and cultivation techniques, and predict the impact on coastal ecosystems.

University of California, Davis

Synthetic Biology, Protein Engineering, and Semi-Biological Photocatalysis to Convert Methane to N-Butanol

The University of California, Davis (UC Davis) will engineer new biological pathways for bacteria to convert ethylene to a liquid fuel. Currently, ethylene is readily available and used by the chemicals and plastics industries to produce a wide range of useful products, but it cannot be cost-effectively converted to a liquid fuel like butanol, an alcohol that can be used directly as part of a fuel blend. UC Davis is addressing this problem with synthetic biology and protein engineering. The team will engineer ethylene assimilation pathways into a host organism and use that organism to convert ethylene into n-butanol, an important platform chemical with broad applications in many chemical and fuel markets. This technology could provide a transformative route from methane to liquid biofuels that is more efficient than ones found in nature.

University of California, Los Angeles

Energy Plant Design

The University of California, Los Angeles (UCLA) is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA's designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

University of California, Los Angeles

Electro-Autotrophic Synthesis of Higher Alcohols

The University of California, Los Angeles (UCLA) is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel--in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA's electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

University of California, Los Angeles

CUSB: A Platform Technology for the Renewable Production of Commodity Chemicals

The University of California, Los Angeles (UCLA) seeks to develop a platform technology, Catalytic Units for Synthetic Biochemistry (CUSB) that will use enzymes in solution (i.e. in vitro) to convert carbohydrates into a wide variety of useful carbon compounds in extremely high yield. The use of enzymes in solution has advantages over whole-cell microorganisms. Enzymes can be concentrated much further than whole-cells which improves volumetric productivity. Additionally enzymes may be less sensitive to the production of compounds of interest that are typically toxic to whole-cells even at low concentrations. Yet most importantly, the use of specific enzymes provides a high degree of precision to direct carbon and energy efficiently from the feedstock to the final product. The team envisions catalytic breakdown modules that will reduce the carbohydrates to simpler compounds. Breakdown energy is released during this chemical process and can be stored in other high-energy chemicals. Additional catalytic modules will be added to utilize the carbon and energy from the breakdown module to build useful chemicals that can replace petroleum products. This process can potentially generate new markets by producing complex chemicals more economically and with higher energy efficiency than current methods. The team predicts that their technology can reduce the non-renewable energy input required for chemical production by more than 2.5 fold. The system can also provide large-scale production of chemicals that are too costly or too environmentally damaging to produce by current methods. During a prior ARPA-E IDEAS award, the team developed this platform technology. Now, as an addition to the ARPA-E REMOTE program, the UCLA team will further its research and demonstrate CUSB by building a prototype system that can produce isobutanol and terpene, at a much higher yield and productivity than has been previously achieved. The successful development of CUSB will represent a paradigm shift in the way high-volume commodity chemicals can be produced from renewable resources.

University of California, Los Angeles

High Efficiency Methanol Condensation Cycle (MC2)

The University of California, Los Angeles (UCLA) will develop a high-efficiency, synthetic metabolic pathway that transforms methanol into n-butanol, a liquid fuel that can be used as a direct substitute for gasoline due to its high energy density. In nature, the process by which organisms that feed on methane convert it into fuel is inefficient, resulting in a substantial loss of carbon in the process. UCLA's synthetic metabolic pathway would oxidize the methanol into formaldehyde, convert the formaldehyde into an essential metabolite known as acetyl-CoA, and then condense the acetyl-CoA into n-butanol. In the end, UCLA's pathway would transform 4 parts methanol into 3 parts water and 1 part n-butanol while achieving 100% carbon conversion. UCLA will also attempt to move this synthetic metabolic pathway into organisms capable of biological methane activation to create a complete methane to n-butanol microbial production system.

University of California, Santa Barbara

Scalable Aquaculture Monitoring System (SAMS)

The University of California, Santa Barbara (UCSB) will lead a MARINER Category 4 project to develop a system-level solution to continuously monitor all stages of seaweed biomass production. To maximize biomass yields and minimize risk, farm managers must be able to monitor farm progress starting at seaweed outplanting and continuing through the growth cycle to harvest. UCSB will develop a Scalable Aquaculture Monitoring System (SAMS) comprised of autonomous and semi-autonomous technologies capable of monitoring biomass productivity and physiological status, as well as the environmental conditions that control its near-term production. UCSB will also develop new software tools to integrate data into real-time, actionable intelligence. SAMS will deliver subsurface biomass imaging and quantification at an individual plant-scale, while maintaining the scalability to monitor multiple giant kelp farms simultaneously. If successful, the integration of canopy and subsurface kelp biomass, productivity, and condition information with environmental data will provide farm managers with a suite of farm data products to monitor farm status from outplant to harvest.


Subscribe to Transportation Fuels