Sorry, you need to enable JavaScript to visit this website.

Autonomous Tow Vessels

C.A. Goudey & Associates

Autonomous Tow Vessels for Offshore Macroalgae Farming

Program: 
ARPA-E Award: 
$909,901
Location: 
Newburyport, MA
Project Term: 
04/06/2018 to 04/05/2021
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Marine macroalgae, also referred to as seaweeds or kelp, are a group of exceptionally diverse aquatic plants. Macroalgae can be found along nearly all coastlines around the globe and in some cases also in the open ocean. They have traditionally been used for food and feed, as well as fertilizer. In 2016, the world produced approximately 26 million wet metric tons of seaweed, primarily through highly labor-intensive farming techniques. While macroalgae production has increased six-fold over the past quarter-century, the current state of macroalgae "mariculture" is not capable of achieving the scale, efficiency and production costs necessary to support a seaweed-to-fuels industry. Dramatically increasing productivity will require significant advancements in the domestication of macroalgae and new farming technologies. To accelerate the development of critical tools and technologies, the MARINER program is supporting projects in five areas: 1) Integrated Cultivation & Harvest System Design, 2) Critical Enabling Components, 3) Computational Modeling, 4) Monitoring Tools, and 5) Breeding & Genomic Tools.

Project Innovation + Advantages: 

The C.A. Goudey and Associates team will lead a MARINER Category 2 project to develop an autonomous marine tow vessel to enable deployment of large-scale seaweed farming systems. Essentially all marine transportation systems rely on manned vessels. These systems are labor-intensive and depend on boats and ships that are a poor match to the tasks associated with deployment and operations of large-scale seaweed farming systems. This project seeks to remove the costs and requirements of manned systems through the use of slow-moving, autonomous tow vessels. Such vessels will enable macroalgae farming systems over larger ocean areas by eliminating the schedule constraints of a manned vessel, and the misapplication of high-speed boats to towing. Once operational, autonomous vessels could be used for a number of farming tasks such as towing pre-seeded longlines to the farm, transporting harvested seaweed back to collection points, or relocation of critical marine infrastructure. Where manned activities are essential, farm personnel can return to shore while the products of their labor make the same journey at a slower pace and significantly lower costs. If successful, this towing solution can be integrated into complete macroalgae farming systems to reduce high operating costs attributable to fuel and labor.

Potential Impact: 

If successful, MARINER projects strive to develop the tools needed to allow the United States to become a world leader in marine biomass production for multiple important applications, including the production of biofuels.

Security: 

Production of biofuels from domestically produced marine biomass could lessen U.S. dependence on foreign oil, bolstering energy security.

Environment: 

Growing large amounts of macroalgae would not compete with land-based food crops, requires no fresh water and can be grown without the addition of energy-intensive, synthetic nitrogen fertilizer. Large-scale macroalgae cultivation may help reduce the negative effects of nutrient overload and ocean acidification in many coastal ocean regions.

Economy: 

A domestic macroalgae industry would not only create a valuable new source of domestic energy, but also create significant new economic and employment opportunities in many waterfront communities along the U.S. coasts from Maine to the Gulf of Mexico, Alaska, and the Pacific Islands.

Contacts
ARPA-E Program Director: 
Dr. Marc von Keitz
Project Contact: 
Mr. Clifford Goudey
Release Date: 
9/19/2017