Cloud-Based DER Control

Default ARPA-E Project Image


Program:
NODES
Award:
$2,482,632
Location:
Cleveland , Ohio
Status:
CANCELLED
Project Term:
09/01/2016 - 08/31/2020

Technology Description:

Eaton will develop and validate a disruptive cloud-computing-based technology aimed at providing agile and robust synthetic regulating reserve services to the power grid. This approach separates the decision-making of synthetic regulating reserve services into two-levels to significantly reduce the computational complexity, thereby enabling large-scale coordinated control of a vast number of DERs and flexible load. The system-operator level estimates and predicts reserve capacity of the distribution network and decides on the appropriate economic incentives for DERs to participate in future services. At the local level, an energy node comprised of a cluster of DERs and flexible loads will automatically decide its own reserve services strategy that takes into account short-term net load and economic incentives. By splitting these decisions between the two levels, the solution does not require extensive communication or negotiation between the local DERs and the system operators in the cloud.

Potential Impact:

If successful, projects included in the NODES Program will develop innovative hardware and software solutions to integrate and coordinate generation, transmission, and end-use energy systems at various points on the electric grid. These control systems will enable real-time coordination between distributed generation, such as rooftop and community solar assets and bulk power generation, while proactively shaping electric load. This will alleviate periods of costly peak demand, reduce wasted energy, and increase renewables penetration on the grid.

Security:

Innovations from this program would help the U.S. grid assimilate at least 50% of renewable generation and provide system reliability and resiliency while managing emerging energy generation and consumption patterns.

Environment:

The addition of flexible loads and DERs into the U.S. grid could offset 3.3 quads of thermal generation and displace 290 million tons of CO2 emissions.

Economy:

Using the NODES approach to integrate flexible loads and DERs into the grid could replace 4.5 GW of spinning reserves (i.e. generation capacity on stand-by in case of outages and unforeseen intermittency), a value of $3.3 billion per year. A more efficient and reliable grid would help protect U.S. businesses from costly power outages and brownouts.

Contact

ARPA-E Program Director:
Dr. Mario Garcia-Sanz
Project Contact:
Mr. Mike Nowak
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
MichaelNowak@Eaton.com

Partners

Cornell University
Air Force/MIT-Lincoln Laboratory
Lawrence Livermore National Laboratory
Argonne National Laboratory
Pacific Gas and Electric

Related Projects


Release Date:
02/04/2015