Sorry, you need to enable JavaScript to visit this website.

Digital System-on-chip CO2 Sensor

N5 Sensors

Digital System-on-chip CO2 Sensor

Program: 
ARPA-E Award: 
$1,529,239
Location: 
GERMANTOWN, MD
Project Term: 
06/25/2018 to 12/24/2021
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Heating, ventilation, and air conditioning (HVAC) consumes a significant portion of the energy used in buildings. Much of this is wasted energy, used when buildings are either not occupied at all, or occupied well under their maximum design conditions. Traditional motion sensors are often used in buildings to adjust lighting levels, but they cannot provide advanced quantitative information about the environment. New classes of sensor systems used to enable advanced control of HVAC levels can include human presence sensors, people counting sensors, and low-cost CO2 sensors. Their improved accuracy and reliability can reduce energy consumption for homes and commercial environments.

Project Innovation + Advantages: 

N5 Sensors and its partners will develop and test a novel semiconductor-based CO2 sensor technology that can be placed on a single microchip. CO2 concentration data can help enable the use of variable speed ventilation fans in commercial buildings. CO2 sensing may also improve the comfort and productivity of people in commercial buildings, including academic spaces. N5 Sensor's solution will determine CO2 concentrations through absorption of CO2 when the concentrations are high in the environment, and desorption of CO2 when the concentrations are low. The team's project combines innovations in a number of areas: ultra-low power sensing architecture, semiconductor microfabrication, effective gas separation membranes, novel signal processing, and machine learning. If successful, the project can result in a 10x reduction in the price of CO2 sensors and the innovation will ultimately result in a low-cost, highly autonomous systems with "peel, stick and press button" type of installation and operation.

Potential Impact: 

If successful, SENSOR projects will dramatically reduce the amount of energy needed to effectively heat, cool, and ventilate buildings without sacrificing occupant comfort.

Security: 

Lower electricity consumption by buildings eases strain on the grid, helping to improve resilience and reduce demand during peak hours, when the threat of blackouts is greatest.

Environment: 

Using significantly less energy could help reduce emissions attributed to power generation. In addition, improved interior air quality could help prevent negative effects on human health.

Economy: 

Buildings will require less energy to operate, reducing heating, cooling, and ventilation costs for businesses and families. In addition, better controlled ventilation may lead to improved indoor air quality (ensured by an accurate occupant count, and validated via widespread CO2 detection) may lead to improved worker productivity and academic performance.

Contacts
ARPA-E Program Director: 
Dr. Jennifer Gerbi
Project Contact: 
Abhishek Motayed
Partners
Molecule Works Inc.
University of Tennessee
Release Date: 
11/16/2017