Sorry, you need to enable JavaScript to visit this website.

High-density SSiC 3D-printed lattices for compact HTHP aero-engine recuperators

Michigan Technological University (MTU)
Program: 
ARPA-E Award: 
$1,846,000
Location: 
Houghton, MI
Project Term: 
01/01/2020 to 12/31/2022
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Heat exchangers are critical to efficient thermal energy exchange in a variety of applications, including electricity generation, transportation, petrochemical plants, waste heat recovery, and more. Heat exchangers designed to handle very high pressures and high temperatures simultaneously are more efficient and compact. Their design also requires finer heat transfer surface and fin features at the limits of existing manufacturing capabilities with high temperature materials. Durable, reliable, and cost-effective higher temperature and pressure heat exchangers that exceed current operating conditions could reduce fuel consumption, system footprint, and capital cost while boosting the performance of a variety of power generation and industrial processes.

Project Innovation + Advantages: 

Michigan Technological University will use advanced ceramic-based 3D printing technology to develop next-generation light, low-cost, ultra-compact, high-temperature, high-pressure (HTHP) heat exchangers. These will be able to operate at temperatures above 1100°C (2012°F) and at pressures above 80 bar (1160 psi). Current technologies cannot produce the high density, monolithic sintered silicon carbide (SSiC) material required for high temperature, high pressure recuperators. The team has invented a direct-ink writing technology for ceramics and techniques to 3D print high-density SSiC parts at scale, to reduce the risk of thermo-mechanical failure and ensure heat exchanger durability and quality.

Potential Impact: 

HITEMMP projects will enable a revolutionary new class of heat exchangers and innovative approaches to advanced manufacturing with applications for a wide range of commercial and industrial energy producers and consumers.

Security: 

High performance, efficient heat exchangers would increase industrial productivity, supporting domestic industries. The developed manufacturing techniques for high temperature materials could strengthen U.S. leadership in advanced manufacturing.

Environment: 

More efficient electricity generation and industrial processes could significantly reduce emissions by enabling more efficient operations.

Economy: 

HITEMMP technologies could enable more cost-effective, efficient, and compact modular power generation systems for multiple applications.

Contacts
ARPA-E Program Director: 
Dr. Michael Ohadi
Project Contact: 
Dr. Sajjad Bigham
Partners
Oak Ridge National Laboratory
Release Date: 
8/9/2018