Sorry, you need to enable JavaScript to visit this website.

High Voltage Re-grown GaN P-N Diodes

Sandia National Laboratories
High Voltage Re-grown GaN P-N Diodes Enabled by Defect and Doping Control
Sandia National Laboratory
Program: 
ARPA-E Award: 
$2,324,700
Location: 
Albuquerque, NM
Project Term: 
09/08/2017 to 05/14/2020
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Electricity generation currently accounts for ~40% of primary energy consumption in the U.S. and continues to be the fastest growing form of end-use energy. Power electronics are responsible for controlling and converting electrical power to provide optimal conditions for transmission, distribution, and load-side consumption. By 2030 as much as 80% of all electricity could pass through some form of power electronics. Applications for power electronics are widespread and include uses in power supplies, motor drives, grid applications, data centers, and distributed energy resources. Today, most power electronics are based on silicon semiconductor devices that have reached their efficiency limits at high power and frequency, due to the material limitations of silicon. Wide-bandgap (WBG) semiconductors such as gallium nitride (GaN) have superior electrical conductivity, breakdown properties, and switching speed. This allows for power converters with much improved efficiencies over silicon - while also dramatically reducing system size, weight, and form factor. Power semiconductor devices overwhelmingly use vertical architectures to realize high breakdown voltage (>1200V) and current levels, without having to enlarge chip size. The vertical architectures require the ability to add specific impurities to selected regions of a semiconductor to produce negative (n-type) and positive (p-type) electrical conduction, a process called doping. Currently, no doping process exists to form selective p-type regions in GaN. This is the major barrier to realization of GaN based vertical power electronic devices. The development of a selective p-type doping process will enable vertical GaN device architectures and unlock the potential of using the WBG semiconductor GaN in power electronics.

Project Innovation + Advantages: 

Vertical transistors based on bulk gallium nitride (GaN) have emerged as promising candidates for future high efficiency, high power applications. However, they have been plagued by poor electrical performance attributed to the existing selective doping processes. Sandia National Laboratories will develop patterned epitaxial regrowth of GaN as a selective area doping processes to fabricate diodes with electronic performance equivalent to as-grown state-of-the-art GaN diodes. The team's research will provide a better understanding of which particular defects resulting from impurities and etch damage during the epitaxial regrowth process limit device performance, how those defects specifically impact the junction electronic properties, and ultimately how to control and mitigate the defects. The improved mechanistic understanding developed under the project will help the team design specific approaches to controlling impurity contamination and defect incorporation at regrowth interfaces and include development of in-chamber cleans and regrowth initiation processes to recover a high-quality epitaxial surfaces immediately prior to crystal regrowth.

Potential Impact: 

If successful, PNDIODES projects will enable further development of a new class of power converters suitable in a broad range of application areas including automotive, industrial, residential, transportation (rail & ship), aerospace, and utilities.

Security: 

More energy efficient power electronics could improve the efficiency of the U.S. power sector. They could also significantly improve the reliability and security of the electrical grid.

Environment: 

More efficient power use may help reduce power-related emissions. Low-cost and highly efficient power electronics could also lead to increased adoption of electric vehicles and greater integration of renewable power sources.

Economy: 

Improved power electronics could yield a significant reduction in U.S. electricity consumption, saving American families and businesses money on their power bills.

Contacts
ARPA-E Program Director: 
Dr. Isik Kizilyalli
Project Contact: 
Mr. Andrew Armstrong
Partners
University of New Mexico
Release Date: 
6/14/2017