Sorry, you need to enable JavaScript to visit this website.

INTEGRATE - Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements

NREL
Program: 
ARPA-E Award: 
$1,800,000
Location: 
Golden, CO
Project Term: 
04/08/2020 to 04/07/2022
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 
The DIFFERENTIATE program seeks to leverage the emerging artificial intelligence (AI) revolution to help resolve the energy and environmental challenges of our time. The program aims to speed energy innovation by incorporating machine learning (ML) into the energy technology development process. A core part of AI, ML is the study of computer algorithms that improve automatically through experience. This approach is expected to facilitate a rapid transition to lower-carbon-footprint energy sources and systems. To organize the proposed efforts, the program uses a simplified engineering design process framework to conceptualize several ML tools that could help engineers execute and solve these problems in a manner that dramatically accelerates the pace of energy innovation.
Project Innovation + Advantages: 
The National Renewable Energy Laboratory (NREL) will develop a novel wind turbine design capability that enables designers to explore advanced technology concepts at a lower cost. This capability will harness the power of a deep neural network (DNN)-based inverse design methodology. To overcome challenges with the use of traditional DNNs in this application, NREL will develop innovative techniques to sparsify the neural network using active subspaces that will ensure that the model is invertible and can quickly zoom in on relevant designs at minimal cost. The models will be trained using data from computational fluid dynamics simulations, running on NREL's supercomputers, which in turn use machine learning assisted turbulence models to predict flow separation and stall observed in wind turbine flows.
Potential Impact: 
DIFFERENTIATE aims to enhance the productivity of energy engineers in helping them to develop next-generation energy technologies. If successful, DIFFERENTIATE will yield the following benefits in ARPA-E mission areas:
Security: 
Seek U.S. technological competitive advantage by leading the development of machine-learning enhanced engineering design tools.
Environment: 
Use these tools to solve our most challenging energy and environmental problems by facilitating an economically-attractive transition to lower carbon-footprint energy sources and systems.
Economy: 
Reap the economic productivity benefits associated with the commercial adoption of the resulting higher-value energy technologies and associated products.
Contacts
ARPA-E Program Director: 
Dr. David Tew
Project Contact: 
Shreyas Ananthan
Partners
University of Maryland
Release Date: 
4/5/2019