Sorry, you need to enable JavaScript to visit this website.

Inverter for High Speed PMSM

Imagen Energy

1200 V SiC Based Extremely Compact, 500 kW, 2000 Hz Inverter for High Speed Permanent Magnet Synchronous Machine (PMSM) Applications

Program: 
ARPA-E Award: 
$847,888
Location: 
New Berlin, WI
Project Term: 
12/19/2017 to 05/18/2020
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Electricity generation currently accounts for ~40% of primary energy consumption in the U.S. and continues to be the fastest growing form of end-use energy. Power electronics condition, control, and convert electrical power in order to provide optimal conditions for transmission, distribution, and load-side consumption. Most of today's power electronics have limitations to their performance, temperature resilience, and size due to the circuit topology and semiconductor power devices used. Emerging semiconductor devices such as those based on wide-bandgap materials -- along with transformative advances in circuit design and system architecture -- present opportunities to dramatically improve power converter performance while reducing size and weight. Development of advanced power electronics with unprecedented functionality, efficiency, reliability, and form factor will help provide the U.S. a critical technological advantage in an increasingly electrified world economy.

Project Innovation + Advantages: 

Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen's design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF). Their solution hopes to maximize the capabilities of the SiC technology and associated digital control platform, thereby bringing the overall drive system performance parameters to levels unachievable by current Si-based power conversion systems. If successful, the project team will demonstrate a motor drive capable of handling large BEMF and increase motor system efficiency over a broad range of operating speeds, a useful combination for high-speed applications in the oil and gas industry, high-speed/high-power compressors, grid-connected energy storage, and renewable energy generation.

Potential Impact: 

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security: 

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment: 

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy: 

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contacts
ARPA-E Program Director: 
Dr. Isik Kizilyalli
Project Contact: 
Mr. Ezana Mekonnen
Partners
Velicon LLC
Release Date: 
8/23/2017