Sorry, you need to enable JavaScript to visit this website.

Inverters for Heavy Equipment Applications

University of Arkansas

Reliable, High Power Density Inverters for Heavy Equipment Applications

Program: 
ARPA-E Award: 
$2,163,630
Location: 
Fayetteville, AR
Project Term: 
03/15/2018 to 09/14/2020
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Electricity generation currently accounts for ~40% of primary energy consumption in the U.S. and continues to be the fastest growing form of end-use energy. Power electronics condition, control, and convert electrical power in order to provide optimal conditions for transmission, distribution, and load-side consumption. Most of today's power electronics have limitations to their performance, temperature resilience, and size due to the circuit topology and semiconductor power devices used. Emerging semiconductor devices such as those based on wide-bandgap materials -- along with transformative advances in circuit design and system architecture -- present opportunities to dramatically improve power converter performance while reducing size and weight. Development of advanced power electronics with unprecedented functionality, efficiency, reliability, and form factor will help provide the U.S. a critical technological advantage in an increasingly electrified world economy.

Project Innovation + Advantages: 

The University of Arkansas and its project team will develop a power inverter system for use in the electrification of construction equipment. Heavy equipment providers are increasingly investing in electrification capability to perform work in harsh environments. As with all electrified systems, size, weight and power considerations must be met by these systems. The team's approach is to utilize the advantages of wide bandgap semiconductors not only in the converter elements themselves, but also in the converter's gate driver as well. This innovation of having the low-voltage circuitry built from the same materials as the power devices enables higher reliability, longer life, and a more compact system packages. Their multi-objective optimization method will provide the best outcome and trade the efficiency and power density goals against circuit complexity, device ratings, thermal management, and reliability constraints. If successful, the team will achieve an improvement of four times the power density and reduce converter cost by 50% compared to today's technology. The proposed design methods and technological advances can also be applied to many applications such as electric vehicles, smart grid power electronics, and data centers.

Potential Impact: 

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security: 

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment: 

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy: 

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contacts
ARPA-E Program Director: 
Dr. Isik Kizilyalli
Project Contact: 
Prof. Alan Mantooth
Partners
Caterpillar, Inc.
Cree Fayetteville, Inc.
Release Date: 
8/23/2017