Sorry, you need to enable JavaScript to visit this website.

Magnet Technology for Power Converters

Carnegie Mellon University (CMU)
Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters
Graphic of Carnegie Mellon's technology
ARPA-E Award: 
Pittsburgh, PA
Project Term: 
02/27/2012 to 03/28/2015
Project Status: 
Technical Categories: 
Critical Need: 
Photovoltaic (PV) solar systems convert the sun's energy into electricity, but only a small percentage of the sunlight that reaches a PV system is converted into useful electricity. This is due in part to the inefficient and failure-prone electrical components used in most PV systems today. Improving the performance of these components would lower the overall cost of PV systems--helping to make renewable solar energy cost-competitive with conventional, nonrenewable forms of electricity generation.
Project Innovation + Advantages: 
Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.
Potential Impact: 
If successful, Carnegie Mellon would help reduce the cost of converting solar energy into usable power for the grid--facilitating the cost-effective grid integration of PV systems.
Lowering the cost of PV systems would help increase the use of solar energy, which in turn would decrease our dependence on fossil fuels and improve U.S. energy security.
Solar energy systems create zero harmful emissions while providing energy to homes and businesses, so their widespread use would significantly improve air quality.
This project could help position the U.S. as a leader in the power electronics industry.
ARPA-E Program Director: 
Dr. Timothy Heidel
Project Contact: 
Prof. Michael McHenry
Magnetics a Division of Spang
University of Pittsburgh
Los Alamos National Laboratory
Release Date: