Sorry, you need to enable JavaScript to visit this website.

Methane-to-Acetate

Pennsylvania State University (Penn State)
Engineering a Methane-to-Acetate Pathway for Producing Liquid Biofuels
Image of Penn State's technology
Program: 
ARPA-E Award: 
$3,000,000
Location: 
University Park, PA
Project Term: 
01/01/2014 to 06/30/2017
Project Status: 
ALUMNI
Technical Categories: 
Critical Need: 
Natural gas can be found in abundance throughout the United States, and is often used for heating, cooking, and electrical power generation. Natural gas is composed primarily of methane, an energy-rich compound not widely used for transportation. Currently, there are no commercially viable biological approaches to convert methane into liquid fuel, and synthetic approaches are expensive and inefficient at small scales. To take advantage of the country's remote natural gas resources, such as off-shore methane, new biological processes that use special microorganisms called "biocatalysts" are needed to transform methane into liquid fuel. These small-scale processes could provide an environment advantage since they would be carbon neutral or better relative to traditional fuels.
Project Innovation + Advantages: 
Pennsylvania State University (Penn State) is engineering a type of bacteria known as Methanosarcina acetivorans to produce acetate from methane gas. Current approaches to methane conversion are energy-intensive and result in substantial waste of carbon dioxide. Penn State will engineer a pathway for converting methane to a chemical called acetate by reversing the natural pathway for acetate to methanol conversion. This new approach is advantageous because it consumes carbon dioxide, produces energy-rich carbon-carbon bonds, and conserves electrons to make the molecules produced reactive and easy to combine with other molecules. The acetate generated can be used to form polymers that can be further processed into liquid fuels.
Potential Impact: 
If successful, Penn State's technology will enable cost-effective, energy-efficient and carbon-efficient conversion of natural gas to liquid fuels.
Security: 
An improved bioconversion process could create cost-competitive liquid fuels significantly reducing demand for foreign oil.
Environment: 
This technology would allow for utilization of small-scale remote natural gas resources or methane and carbon rich gas residues for fuel production reducing harmful emissions associated with conventional fuel technologies.
Economy: 
Expanding U.S. natural gas resources via bioconversion to liquid fuels could contribute tens of billions of dollars to the nation's economy while reducing or stabilizing transport fuel prices.
Contacts
ARPA-E Program Director: 
Dr. Marc von Keitz
Project Contact: 
Dr. James "Greg" Ferry
Release Date: 
9/19/2013