Sorry, you need to enable JavaScript to visit this website.

Methanol to Liquid Fuel

University of Delaware (UD)
Synthetic Methylotrophy to Liquid Fuel
Image of Delaware's technology
Program: 
ARPA-E Award: 
$6,935,318
Location: 
Newark, DE
Project Term: 
01/13/2014 to 12/31/2019
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 
Natural gas can be found in abundance throughout the United States, and is often used for heating, cooking, and electrical power generation. Natural gas is composed primarily of methane, an energy-rich compound not widely used for transportation. Currently, there are no commercially viable biological approaches to convert methane into liquid fuel, and synthetic approaches are expensive and inefficient at small scales. To take advantage of the country's remote natural gas resources, such as off-shore methane, new biological processes that use special microorganisms called "biocatalysts" are needed to transform methane into liquid fuel. These small-scale processes could provide an environment advantage since they would be carbon neutral or better relative to traditional fuels.
Project Innovation + Advantages: 
The University of Delaware (UD) is engineering new metabolic pathways to convert methane into liquid fuel. UD's technology targets high-efficiency activation of methane to methanol without the consumption of additional energy, followed by conversion to butanol. The two-stage technology is envisioned to recapture carbon dioxide --with no carbon dioxide emissions. The team will use metabolic engineering and synthetic biology techniques to enable methanol utilization in organisms that are not natively about to do so. This modification will allow the new organism to grow on methanol, and utilize the available energy to produce butanol. Butanol is a high-energy fuel, with chemical and physical properties that are compatible with the current gasoline-based technologies for transportation.
Potential Impact: 
If successful, UD's engineered bioconversion system would produce low-cost, high-energy butanol for transportation.
Security: 
An improved bioconversion process could create cost-competitive liquid fuels significantly reducing demand for foreign oil.
Environment: 
This technology would allow for utilization of small-scale remote natural gas resources or methane and carbon rich gas residues for fuel production reducing harmful emissions associated with conventional fuel technologies.
Economy: 
Expanding U.S. natural gas resources via bioconversion to liquid fuels could contribute tens of billions of dollars to the nation's economy while reducing or stabilizing transport fuel prices.
Contacts
ARPA-E Program Director: 
Dr. Marc von Keitz
Project Contact: 
Prof. Eleftherios Papoutsakis
Partners
Industrial Microbes
Rensselaer Polytechnic Institute
Release Date: 
9/19/2013