Sorry, you need to enable JavaScript to visit this website.

Modular Solid State Transformers

Georgia Tech Research Corporation

Grid-Connected Modular Soft-Switching Solid State Transformers (M-S4T)

Program: 
ARPA-E Award: 
$1,519,636
Location: 
Atlanta, GA
Project Term: 
02/12/2018 to 02/11/2020
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Electricity generation currently accounts for ~40% of primary energy consumption in the U.S. and continues to be the fastest growing form of end-use energy. Power electronics condition, control, and convert electrical power in order to provide optimal conditions for transmission, distribution, and load-side consumption. Most of today's power electronics have limitations to their performance, temperature resilience, and size due to the circuit topology and semiconductor power devices used. Emerging semiconductor devices such as those based on wide-bandgap materials -- along with transformative advances in circuit design and system architecture -- present opportunities to dramatically improve power converter performance while reducing size and weight. Development of advanced power electronics with unprecedented functionality, efficiency, reliability, and form factor will help provide the U.S. a critical technological advantage in an increasingly electrified world economy.

Project Innovation + Advantages: 

Georgia Tech Research Corporation and its project team will develop a solid-state transformer for medium-voltage grid applications using silicon carbide with a focus on compact size and high-performance. Traditional grid connected transformers have been used for over 100 years to 'step down' higher voltage to lower voltage. Higher voltages allows for delivery of power over longer distances and lower voltages keeps consumers safe. But traditional distribution transformers lack integrated sensing, communications, and controls. They also lack the ability to control the voltage, current, frequency, power factor or anything else to improve local or global performance. Solid-state transformers can provide improvements and Georgia Tech's design seeks to address major roadblocks to their implementation, namely insulation, cooling, voltage change, and magnetic field issues, as well as downstream protection against abnormal current faults. If successful, the team will greatly increase transformer functionality while reducing its size over current technologies, affecting application areas like grid energy storage, solar photovoltaics and electric vehicle fast chargers, while also enabling better grid monitoring and easy retrofits.

Potential Impact: 

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security: 

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment: 

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy: 

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contacts
ARPA-E Program Director: 
Dr. Isik Kizilyalli
Project Contact: 
Dr. Deepak Divan
Release Date: 
8/23/2017