Sorry, you need to enable JavaScript to visit this website.

Multi-Wavelength Optical Transceivers

IBM T.J. Watson Research Center

Multi-Wavelength Optical Transceivers Integrated on Node 

Program: 
ARPA-E Award: 
$3,382,954
Location: 
Yorktown Heights, NY
Project Term: 
10/31/2017 to 04/30/2020
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Datacenters are a critical component of the modern internet, responsible for processing and storing tremendous amounts of data in the "cloud." Datacenters also provide the computational power needed for handling "big data," a growing segment of the U.S. economy. Currently, datacenters consume more than 2.5% of U.S. electricity and this figure is projected to double in about eight years due to the expected growth in data traffic. There are many approaches to improving the energy efficiency of datacenters, but these strategies will be limited by the efficiency with which information travels along metal interconnects within the devices in the datacenter--all the way down to the computer chips that process information. Unlike metal interconnects, photonic interconnects do not rely on electrons flowing through metal to transmit information. Instead, these devices send and receive information in the form of photons--light--enabling far greater speed and bandwidth at much lower energy and cost per bit of data. The integration of photonic interconnects will enable new network architectures and photonic network topologies that hold the potential to double overall datacenter efficiency over the next decade.

Project Innovation + Advantages: 

IBM T.J. Watson Research Center will develop a two-pronged approach to improve future datacenter efficiency.. New optical interconnect solutions can provide a path to energy-efficient datacenters at higher bandwidth levels, but they must also meet key metrics including power density, cost, latency, reliability, and signal integrity. IBM's team will use their expertise with vertical-cavity surface-emitting lasers (VCSELs) to develop VCSEL-based optical interconnect technology capable of meeting the necessary future demands. VCSEL-based interconnects offer an appealing combination of low power consumption, small size, high performance, low cost, and manufacturability. The team will work to increase the operating speed of VCSELs, detectors, and the associated circuits, while also developing packaging solutions to install optical interconnects on the integrated circuit. This integration will allow the system to eliminate the traditional driver and receiver electronics of most board-mounted optical modules, greatly reducing the cost and energy use of data transfer. The team will eventually use single-ended signaling to drive and receive signals from the modules directly, increasing the bandwidth of the system chips by at least two times and improving power efficiencies across the datacenter.

Potential Impact: 

If successful, developments from ENLITENED projects will result in an overall doubling in datacenter energy efficiency in the next decade through deployment of new photonic network topologies.

Security: 

The United States is home to much of the world's datacenter infrastructure. Photonic networks add resilience that can bolster the energy security of this critical driver of economic activity.

Environment: 

Reducing the overall energy consumption of datacenters cuts energy-related emissions per bit of data processed or stored.

Economy: 

Photonic networks can lower the costs associated with operating datacenters, improving American economic competitiveness in this fast-developing area.

Contacts
ARPA-E Program Director: 
Dr. Michael Haney
Project Contact: 
Dr. Daniel Kuchta
Release Date: 
6/14/2017