Sorry, you need to enable JavaScript to visit this website.

RFID Sensor Network for Human Presence Sensing

University of Colorado, Boulder (CU-Boulder)

Battery-Free RFID Sensor Network with spatiotemporal Pattern Network Based Data Fusion System for Human Presence Sensing

Program: 
ARPA-E Award: 
$2,000,000
Location: 
Boulder, CO
Project Term: 
05/28/2018 to 05/28/2021
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Heating, ventilation, and air conditioning (HVAC) consumes a significant portion of the energy used in buildings. Much of this is wasted energy, used when buildings are either not occupied at all, or occupied well under their maximum design conditions. Traditional motion sensors are often used in buildings to adjust lighting levels, but they cannot provide advanced quantitative information about the environment. New classes of sensor systems used to enable advanced control of HVAC levels can include human presence sensors, people counting sensors, and low-cost CO2 sensors. Their improved accuracy and reliability can reduce energy consumption for homes and commercial environments.

Project Innovation + Advantages: 

The University of Colorado, Boulder (CU-Boulder) will develop an integrated occupancy detection system based on a radio-frequency identification (RFID) sensor network combined with privacy-preserving microphones and low-resolution cameras to detect human presence. The system may also analyze electrical noise on power lines throughout a residential home to infer occupancy in different areas. The system will draw its accuracy from the combination of data sources, uncovering human presence not only from physical image and audio sensor data, but also considering what electrical activity reveals about human activity. All of these data streams (image, audio, and electrical activity) will be combined in computationally efficient ways to enable high accuracy human presence detection. The low powered devices in this system will be wirelessly powered, allowing the system to be deployed in a home without costly and invasive rewiring.

Potential Impact: 

If successful, SENSOR projects will dramatically reduce the amount of energy needed to effectively heat, cool, and ventilate buildings without sacrificing occupant comfort.

Security: 

Lower electricity consumption by buildings eases strain on the grid, helping to improve resilience and reduce demand during peak hours, when the threat of blackouts is greatest.

Environment: 

Using significantly less energy could help reduce emissions attributed to power generation. In addition, improved interior air quality could help prevent negative effects on human health.

Economy: 

Buildings will require less energy to operate, reducing heating, cooling, and ventilation costs for businesses and families. In addition, better controlled ventilation may lead to improved indoor air quality (ensured by an accurate occupant count, and validated via widespread CO2 detection) may lead to improved worker productivity and academic performance.

Contacts
ARPA-E Program Director: 
Dr. Marina Sofos
Project Contact: 
Gregor Henze
Partners
National Renewable Energy Laboratory
University of Washington
Iowa State University
Release Date: 
11/16/2017