Root Genetics for Drought and Carbon Adaptation

Default ARPA-E Project Image


Program:
ROOTS
Award:
$8,192,319
Location:
Fort Collins, Colorado
Status:
ACTIVE
Project Term:
07/03/2017 - 01/02/2025

Technology Description:

Colorado State University (CSU) will develop a high-throughput ground-based robotic platform that will characterize a plant’s root system and the surrounding soil chemistry to better understand how plants cycle carbon and nitrogen in soil. CSU’s robotic platform will use a suite of sensor technologies to investigate crop genetic-environment interaction and generate data to improve models of chemical cycling of soil carbon and nitrogen in agricultural environments. The platform will collect information on root structure and depth, and deploy a novel spectroscopic technology to quantify levels of carbon and other key elements in the soil. The technology proposed by the Colorado State team aims to speed the application of genetic and genomic tools for the discovery and deployment of root traits that control plant growth and soil carbon cycling. Crops will be studied at two field sites in Colorado and Arizona with diverse advantages and challenges to crop productivity, and the data collected will be used to develop a sophisticated carbon flux model. The sensing platform will allow characterization of the root systems in the ground and lead to improved quantification of soil health. The collected data will be managed and analyzed through the CyVerse "big data" computational analytics platform, enabling public access to data connecting aboveground plant traits with belowground soil carbon accumulation.

Potential Impact:

If successful, developments made under the ROOTS program will produce crops that will greatly increase carbon uptake in soil, helping to remove CO2 from the atmosphere, decrease nitrous oxide (N2O) emissions, and improve agricultural productivity.

Security:

America’s soils are a strategic asset critical to national food and energy security. Improving the quality of soil in America’s cropland will enable increased and more efficient production of feedstocks for food, feed, and fuel. 

Environment:

Increased organic matter in soil will help reduce fertilizer use, increase water productivity, reduce emissions of nitrous oxide, and passively sequester carbon dioxide from the atmosphere.

Economy:

Healthy soil is foundational to the American economy and global trade. Increasing crop productivity will make American farmers more competitive and contribute to U.S. leadership in an emerging bio-economy.

Contact

ARPA-E Program Director:
Dr. Steven Singer
Project Contact:
Dr. John McKay
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
jkmckay@colostate.edu

Related Projects


Release Date:
04/12/2016