Scalable Architecture for EV Power Electronics

Default ARPA-E Project Image


Program:
CIRCUITS
Award:
$2,400,000
Location:
Boulder, Colorado
Status:
ALUMNI
Project Term:
03/28/2018 - 09/27/2021

Technology Description:

The University of Colorado, Boulder (CU-Bolder) and its project team will develop new composite SiC power converter technology that achieves high power and voltage conversion (250 VDC to 1200 VDC) in a smaller package than ever achieved due largely to improved switching dynamics and reduced need for large passive energy storage components. Also, utilizing higher system voltage in vehicular power systems has been proven to enable vehicle manufacturers to use thinner and lighter wires and improve vehicle powertrain system efficiency. The team seeks to demonstrate the power converter as an on-board, high-power, multifunctional system for both charging electric vehicles and providing power to the motor. The project will lead to experimental demonstration of a 100 kW multifunction electric vehicle power conversion system that includes integrated wired charging and wireless charging functions. If successful, the CU-Boulder team will make important progress towards reducing the size, cost, and complexity of power systems associated with electric vehicles.

Potential Impact:

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security:

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment:

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy:

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contact

ARPA-E Program Director:
Dr. Isik Kizilyalli
Project Contact:
Dr. Robert Erickson
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
rwe@colorado.edu

Partners

National Renewable Energy Laboratory

Related Projects


Release Date:
01/18/2017