Program:
IONICS
Award:
$3,650,000
Location:
La Jolla, California
Status:
ALUMNI
Project Term:
01/24/2017 - 11/10/2023
Website:

Technology Description:

The University of California, San Diego (UC San Diego), in partnership with Liox Power and the University of Maryland, will develop a self-forming, high temperature solid-state lithium battery that solves the critical cost and performance problems impeding commercialization of solid-state batteries for electric vehicles. The battery will possess a very long life due to a chemical mechanism that repairs cycling damage automatically. This self-healing electrolyte will also limit the growth of dendrites. Dendrites are branchlike metal fibers that can grow to span the space between the negative and positive electrodes, thereby causing a short circuit. The team plans to reduce costs by designing a manufacturing process for forming solid-state electrolytes and cathodes in a single step by depositing a graded lithium/phosphorous/sulfur composite material as both the cathode and electrolyte. In theory, this composition should be able to remove any deformations due to dendrite formation by a simple thermal cycling process. A non-flammable polymer used within this composite will both add structural strength and eliminate the need for flammable liquid electrolytes. The team projects that the battery will cost half of current lithium-ion batteries while doubling the energy density.

Potential Impact:

If successful, developments made under the IONICS program will increase the energy storage content for vehicle batteries by about 30% compared to today's Li-ion batteries and significantly reduce battery storage system costs.

Security:

IONICS program innovations could contribute to energy storage solutions for transportation and the grid, lessening U.S. dependence on imported oil and improving grid resilience.

Environment:

A 10% increase in electric vehicle use would reduce US oil consumption by 3% and reduce total US CO2 emissions by 1%.

Economy:

IONICS program innovations could further establish U.S. businesses as technical leaders in energy storage, encouraging greater use of readily available renewable resources and increasing the competitiveness of electric vehicles.

Contact

ARPA-E Program Director:
Dr. Halle Cheeseman
Project Contact:
Ping Liu
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
piliu@eng.ucsd.edu

Partners

Liox Power
University of Maryland

Related Projects


Release Date:
02/26/2016