Sorry, you need to enable JavaScript to visit this website.

Ultra-dense Power Converters

United Technologies Research Center (UTRC)

Ultra Dense Power Converters for Advanced Electrical Systems

Program: 
ARPA-E Award: 
$1,583,576
Location: 
East Hartford, CT
Project Term: 
04/06/2018 to 04/05/2021
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 

Electricity generation currently accounts for ~40% of primary energy consumption in the U.S. and continues to be the fastest growing form of end-use energy. Power electronics condition, control, and convert electrical power in order to provide optimal conditions for transmission, distribution, and load-side consumption. Most of today's power electronics have limitations to their performance, temperature resilience, and size due to the circuit topology and semiconductor power devices used. Emerging semiconductor devices such as those based on wide-bandgap materials -- along with transformative advances in circuit design and system architecture -- present opportunities to dramatically improve power converter performance while reducing size and weight. Development of advanced power electronics with unprecedented functionality, efficiency, reliability, and form factor will help provide the U.S. a critical technological advantage in an increasingly electrified world economy.

Project Innovation + Advantages: 

United Technologies Research Center (UTRC) and its project team will develop an extremely efficient power converter capable of handling kilowatts of electricity at ultra-high power densities. The team will leverage the superior performance of silicon carbide (SiC) or gallium nitride (GaN) devices to achieve its efficiency and power density goals. In the aerospace industry, electrical power distribution can begin to displace pneumatic power distribution using this technology. Efficient power conversion in aircraft will be needed as hydraulic systems, including landing gear systems, are replaced with electric actuation. Electric engine start, electric air-conditioning and cabin pressurization are also key advances in this area. One of the major objectives of the team is to halve converter loss, facilitating a transition from present liquid cooling thermal management to air cooling only. These improvements can help reduce the weight of airline electrical components, critical for the advancement of more electric aircraft. If successful, the team expects that aerospace is a good first adopter of their technology as the industry can more easily accommodate the costs and adoption of new technology better than other industrial applications.

Potential Impact: 

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security: 

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment: 

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy: 

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contacts
ARPA-E Program Director: 
Dr. Isik Kizilyalli
Project Contact: 
Dr. Suman Dwari
Partners
Michigan State University
Release Date: 
8/23/2017