Wafer-Level Integrated Concentrating Photovoltaics

Default ARPA-E Project Image


Program:
MOSAIC
Award:
$1,795,704
Location:
Cambridge, Massachusetts
Status:
ALUMNI
Project Term:
01/01/2016 - 04/09/2020

Technology Description:

The Massachusetts Institute of Technology (MIT) with partner Sandia National Laboratories will develop a micro-CPV system. The team’s approach integrates optical concentrating elements with micro-scale solar cells to enhance efficiency, reduce material and fabrication costs, and significantly reduce system size. The team’s key innovation is the use of traditional silicon PV cells for more than one function. These traditional cells lay on a silicon substrate that has etched reflective cavities with high-performance micro-PV cells on the cavity floor. Light entering the system will hit a primary concentrator that then directs light into the reflective cavities and towards the high performance micro-PV cells. Diffuse light, which most CPV technologies do not capture, is collected by the lower performance silicon PV cells. The proposed technology could provide 40-55% more energy than conventional FPV and 15-40% more energy than traditional CPV with a significantly reduced system cost, because of the ability to collect both direct and diffuse light in a thin form factor.

Potential Impact:

If successful, innovations from MIT’s project may lower the cost of solar systems by allowing economical, high-volume manufacturing of micro-CPV arrays. Improved systems could encourage greater adoption of solar power in all three primary markets – residential, commercial, and utility.

Security:

Expanded use of clean, renewable solar power could reduce dependence on foreign sources of energy.

Environment:

Solar power offers clean power generation with zero emissions. Technologies developed under MOSAIC may also enable solar installations with smaller physical footprints, reducing the environmental impacts of large solar arrays.

Economy:

Technologies developed under MOSAIC could offer a cost-effective option for clean, locally produced power across all market sectors.

Contact

ARPA-E Program Director:
Dr. James Zahler
Project Contact:
Prof. Juejun Hu
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
hujuejun@mit.edu

Partners

US Naval Research Laboratory
Sandia National Laboratory

Related Projects


Release Date:
12/08/2014