Powertrain Innovations Workshop

ARPA-E held a workshop on Powertrain Innovations for Connected and Autonomous Vehicles on May 14 and 15, 2015 in Denver, CO. This workshop convened experts from various fields and affiliations (including OEM, suppliers, national labs, academia and oil companies) to consider the development of future high efficiency light- and heavy-duty vehicle powertrains for connected, semi-autonomous and fully autonomous (driverless) vehicles.

Even beyond 2030, the majority of vehicles in the US will continue to be engine-powered, either in conventional or hybrid configurations. As a result the light and heavy duty vehicle fleet will continue to consume about 30EJ of primary fuel energy, including substantial volumes of imported oil. Currently, each 10% improvement in vehicle fuel efficiency corresponds to a ~3% reduction in primary energy usage in the United States, with concomitant GHG emissions reductions.

Advances in automated driving and vehicle connectivity (V2V, V2I, V2x) will in the near future allow for the widespread deployment of semi-autonomous and fully-autonomous (driverless) vehicles. It is generally assumed that such autonomous vehicles will be EVs, but pure EVs will continue to comprise only a small fraction of all vehicles in the 2030 timeframe. As a result a large number of connected or autonomous vehicles will utilize combustion engines in conventional or hybrid powertrains. Semi- or fully-autonomous operation takes the driver out of the loop with respect to engine control and vehicle operation, while also potentially allowing for more fuel efficient drivetrains and more energy efficient operation overall.  ARPA-E is interested in fuel efficient technologies for vehicles that take advantage of current and future vehicle connectivity and semi- or fully-autonomous operation, on a fuel-agnostic basis. 

Areas of interest for this workshop and primary objectives of the workshop included:

  • Powertrain architecture and hardware: the identification of advanced engine and powertrain technologies that will improve future vehicle fuel economy under real-world driving conditions; and
  • Powertrain control technologies: the identification of advanced engine and powertrain control technologies and strategies that take advantage, on an individual vehicle basis, of vehicle connectivity and/or semi- and fully-autonomous operation to improve fuel efficiency.

A summary of the event and presentation slides are available below. 


Day 1

8:15 - Tim Heidel, ARPA-E - Welcome and Opening Remarks

8:30 - Chris Atkinson, ARPA-E - Powertrain Innovations in Connected and Autonomous Vehicles

9:15 - John DeCicco, University of Michigan - Plenary: Vehicle of the Future

10:30 - Derek Caveney, Toyota Technical Center - Plenary: Connected and Automated Vehicles

11:00 - Chris Hennessy, IAV - Plenary: Powertrain Architecture Definition for Connected Vehicles

1:00 - Breakout Session - Information, Connectivity and Controls – Impact on Fuel Efficiency

2:15 - Tim Johnson, Corning - Plenary: Future Vehicle Emissions and Fuel Efficiency

4:00 - Gary Bishop, University of Denver - Plenary: Real-World Vehicle Emissions Measurement


Day 2 

8:00 - Chris Atkinson, ARPA-E - Welcome and Introduction to Day 2

8:15 - Nate Gorence, ARPA-E - Technology-to-Market Introduction

8:30 - Dean Tomazic, FEV - Plenary: Powertrain of the Future

10:30 - Li Jiang, Robert Bosch LLC - Plenary: Powertrain Controls Technologies 

11:00 - Breakout Session - Powertrain Hardware Innovations for Connected and Autonomous Vehicles