In the study described in this paper, the authors represent the entire U.S. power generation fleet with an agent-based model that incorporates projections for future need as well as historical data on types and typical lifetimes of existing power plants.  This model was used to examine various scenarios for fusion market entry that included variations in entry date, uptake/transition rate, and final market capture fraction.

Following a concurrent engineering strategy that considers multidisciplinary subsystem interactions from the beginning of the design process, CCD applies control concepts to design the entire system and reach optimal solutions that are not achievable otherwise. This approach is a game changer for the control engineer, who will be not only the designer of advanced control algorithms but also the natural leader of the design of new products and systems.

This document reports on an ARPA-E-sponsored JASON assessment of the “Prospects for Low Cost Fusion Development.” Specifically, the question is whether magneto-inertial fusion (MIF) is a promising approach toward achieving controlled thermonuclear fusion at dramatically lower costs than other approaches.

Residential combined heat and power (CHP) systems produce electricity onsite while utilizing waste heat to supplement home heating requirements, which can lead to significant reductions in CO2 emissions and primary energy consumption. 

Increasing the conversion efficiency of incident solar energy to electricity is a key goal in the solar R&D community. In this issue of Joule, a conceptual hybrid photovoltaic/thermal (PV/T) receiver design is reported by the research groups of Evelyn Wang and Gang Chen. High exergetic efficiency is achieved by absorbing below-bandgap and excessively high-energy photons as thermal energy, while allowing photons at the PV’s bandgap to pass through to the underlying cell.

ARPA-E’s impact assessment initiative documents the scientific and commercial successes achieved by a selection of ARPA-E-funded projects. The third installment of this series, “ARPA-E Impacts: A Sampling of Project Outcomes, Volume III” provides a glimpse into the diverse and sophisticated research portfolio of advanced energy technologies that will enable the United States to tackle our most pressing energy challenges.

Recent advances in wide band-gap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN) are enabling a new generation of power semiconductor devices that far exceed the performance of silicon-based devices. Past ARPA-E programs (ADEPT, Solar ADEPT, and SWITCHES) have enabled innovations throughout the power electronics value chain, especially in the area of WBG semiconductors.

Additive manufacturing enables new approaches to chemical reactor design due to the ability to build complex geometries and topologies inaccessible to traditional manufacturing technologies.

In this Perspective, we focus on three tasks to guide and further advance the reversible lithium metal electrode. First, we summarize the state of research and commercial efforts in terms of four key performance parameters, and identify additional performance parameters of interest. 

Today more than 99% of thermoelectric power plants (coal Rankine, natural gas combined cycle, solar thermal, etc) in the United States utilize some form of wet cooling due to the superior thermal properties of water over air. Further, for large-scale building cooling applications, wet cooling of the condenser is employed as well. Globally, the projected growth of electrification and air conditioning deployment is a particular concern in water-constrained areas in northern Africa, the Middle East, and India where further cooling load requirements will put stresses on limited water supplies.