ABSTRACT: Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide.

Abstract: Wide bandgap power semiconductor devices offer enormous energy efficiency gains in a wide range of potential applications. However, today, they remain too costly relative to Si devices to gain ubiquitous adoption in many higher power applications. In 2014, ARPA-E launched a new research program entitled SWITCHES, that seeks to enable the development of high voltage (1200 V+), high current (100 A) single die power semiconductor devices that, upon ultimately reaching scale, have the potential to reach functional cost parity ($/A) with silicon power transistors while also offering breakthrough relative circuit performance (low losses, high switching frequencies, and high temperature operation).

Executive Summary: The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy.

Executive Summary: Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the contiguous United States at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand.

If methane, the main component of natural gas, can be efficiently converted to liquid fuels, world reserves of methane could satisfy the demand for transportation fuels in addition to use in other sectors. However, the direct activation of strong C-H bonds in methane and conversion to desired products remains a difficult technological challenge.

ABSTRACT: In production of liquid fuels, the enormous barriers that face plausible substitutes for fossil fuel sources are derived from two factors: the lowest-cost economics of commodities and the logistics of implementation of new technologies at immense scale. These barriers make the development of alternatives to petroleum one of the most challenging problems faced by human society.

ABSTRACT: Biofuels are by now a well-established component of the liquid fuels market and will continue to grow in importance for both economic and environmental reasons. To date, all commercial approaches to biofuels involve photosynthetic capture of solar radiation and conversion to reduced carbon; however, the low efficiency inherent to photosynthetic systems presents significant challenges to scaling.

ABSTRACT: Public policies at both the state and federal levels in the United States and a variety of technological and economic changes are poised to significantly alter both the demand for and supply of electricity in the country over the next several decades.

ABSTRACT: After a century of unprecedented growth in science, technology, and the economy, we now face tremendous challenges to our ability to fuel the future: a fluctuating oil price, a changing climate, and continued dependence on unreliable energy sources. These problems are increasingly personal, and the demand for solutions becomes increasingly urgent. There are many changes that we must make to address these challenges, but the ultimate solution(s) will only come from fundamental innovations in science and technology.

ABSTRACT: My parents nurtured my awareness of the big problems facing our world and throughout my life have supported me in my desire to find solutions, even though this meant I was not following any kind of conventional career path. I have also been fortunate to have friends, colleagues, and my own wife and family, who have encouraged me in hard times, and never doubted that devoting my life to working on solutions to climate change was what I should be doing.