Slick Sheet: Project
CTFusion is developing an early-stage approach to a commercially viable fusion power plant. The company will pursue higher performance in a compact fusion configuration called a spheromak through targeted upgrades of an existing plasma system. The project aims to demonstrate the required physical parameters, engineering performance, and scalability of the team's fusion concept toward an eventual electricity-producing, economical fusion power plant.

Slick Sheet: Project
Sandia National Laboratories will develop a new device to prevent EMP damage to the power grid. The EMP arrestor will be comprised of diodes fabricated from the semiconductor gallium nitride (GaN), capable of responding on the ns timescale required to protect the grid against EMP threats. The diodes will be capable of blocking 20 kilovolts (kV), enabling a single device to protect distribution-level equipment on the grid. The team will focus on the epitaxial crystal growth of GaN layers and device design needed to achieve the 20 kV performance target.

Slick Sheet: Project
Northeastern University will develop a maintenance-free sensor network to improve energy and agricultural efficiency by monitoring water content in biofuel feedstocks. The team’s zero-power sensors will form distributed networks that can capture, process, and communicate in-field data to help farmers determine how to maximize yield. Specifically, sensors will monitor water stress-related plant characteristics and relay this data wirelessly to a control center in the irrigation system.

Slick Sheet: Project
The Massachusetts Institute of Technology (MIT) will lead a team including Georgia Tech, Louisiana Tech, and the Idaho National Lab in developing multimetallic layered composites (MMLCs) for advanced nuclear reactors and assessing how they will improve reactor performance. Rather than seeking complex alloys that offer exceptional mechanical properties or corrosion resistance at unacceptable cost, this team will develop materials with functionally graded layers, each with a specific function. The team will seek general design principles and engineer specific MMLC embodiments.

Slick Sheet: Project
Los Alamos National Laboratory will develop a scalable, compact, high-temperature, heat pipe reactor (HPR) to provide heat and electricity to remote areas. A 15MWth HPR could be built on-site in less than a month and self-regulate its power to plug into microgrids. The team will use high temperature materials via advanced manufacturing to reduce costs, and further cost reduction will be achieved from novel sensors embedded in the reactor core for continuous monitoring, reducing the number of operational staff needed.

Slick Sheet: Project
In the last decade, big data has enabled high-yield production of bioenergy crops. The drawback in agricultural systems data is that researchers are grappling with large, complex, multidimensional datasets comprised of thousands of data layers captured weekly or daily in dynamic outdoor environments. Converting all of these measurements into knowledge and actionable outcomes that keeps up with farmer and researcher demand is difficult. Tools that can automatically detect patterns in this data are needed to guide agricultural researchers to better inform experimental design and data analysis.

Slick Sheet: Project
Sonrisa Research will develop a new class of SiC power transistors using a simple three-dimensional architectural modification to reduce the channel resistance by up to a factor of nine. To accomplish this, Sonrisa will etch trenches into the basic planar MOSFET, increasing its effective channel width without increasing its overall area. This is similar to the fin-type field-effect transistor (FinFET) geometry popular in advanced Si integrated circuits, but in a configuration that meets high-power application needs.

Slick Sheet: Project
Oregon State University (OSU) is developing a system for extracting clean irrigation water from hydraulic fracturing wastewater using low-grade solar or industrial waste heat. The system would efficiently separate, condense, and reclaim water vapor from wastewater using a heat-activated swirling nozzle combined with an in-line demister. OSU’s technology would be modular, portable, scalable, and deployable at a fraction of the cost of existing treatment systems.

Slick Sheet: Project
Los Alamos National Laboratory will develop proton exchange membrane (PEM) fuel cells for light-duty vehicles that operate on hydrogen or dimethyl ether (DME) fuel in the temperature range of 80-230°C (176-446°F) without first warming or humidifying the incoming fuel stream.

Slick Sheet: Project
Stanford will develop an innovative cooling technology, the Extreme Heat Flux Micro- (EHFμ-) Cooler, to improve reliability and performance in power electronics by offering improved chip thermal management. The cooler employs a novel liquid wicking, thin-film evaporator, with microchannels to route liquid and the resulting vapor, with the net effect of improved heat removal rates at manageable pressure drops. This significantly increases heat flux thereby reducing the device (chip) temperature.