Slick Sheet: Project
The University of California, Santa Barbara (UCSB) is developing an energy storage device for HEVs that combines the properties of capacitors and batteries in one technology. Capacitors enjoy shorter charging times, better durability, and higher power than batteries, but offer less than 5% of their energy density. By integrating the two technologies, UCSB’s design would offer a much reduced charge time with a product lifetime that matches or surpasses that of typical EV batteries. Additionally, the technology would deliver significantly higher power density than any current battery.

Slick Sheet: Project
Arizona State University (ASU) is developing an innovative electrochemical technology for capturing the CO2 released by coal-fired power plants. ASU’s technology aims to cut both the energy requirements and cost of CO2 capture technology in half compared to today’s best methods. Presently, the only proven commercially viable technology for capturing CO2 from coal plants uses a significant amount of energy, consuming roughly 40% of total power plant output. If installed today, this technology would increase the cost of electricity production by 85%.

Slick Sheet: Project
The University of Minnesota (UMN) is developing an ultra-thin separation membrane to decrease the cost of producing biofuels, plastics, and other industrial materials. Nearly 6% of total U.S. energy consumption comes from the energy used in separation and purification processes. Today’s separation methods used in biofuels production are not only energy intensive, but also very expensive.

Slick Sheet: Project
MicroLink Devices is developing low-cost, high-efficiency solar cells to capture concentrated sunlight in an effort to increase the amount of electricity generated by concentrating solar power plants. The continued growth of the CPV market depends strongly on continuing to reduce the cost of CPV solar cell technologies. MicroLink will make an all-lattice-matched solar cell that can achieve greater power conversion efficiency than conventional CPV technologies, thereby reducing the cost of generating electricity.

Slick Sheet: Project
Glint Photonics is developing an inexpensive solar concentrating PV (CPV) module that tracks the sun’s position over the course of the day to channel sunlight into PV materials more efficiently. Conventional solar concentrator technology requires complex moving parts to track the sun’s movements. In contrast, Glint’s inexpensive design can be mounted in a stationary configuration and adjusts its properties automatically in response to the solar position.

Slick Sheet: Project
Electron Energy Corporation (EEC) and its team are developing a new processing technology that could transform how permanent magnets found in today’s EV motors and renewable power generators are fabricated. This new process, known as friction consolidation extrusion (FC&E), could produce stronger magnets at a lower cost and with reduced rare earth mineral content.

Slick Sheet: Project
Pratt & Whitney Rocketdyne (PWR) is developing a new combustor for gas turbine engines that uses shockwaves for more efficient combustion through a process known as continuous detonation. These combustors would enable more electricity to be generated from a given amount of natural gas, increasing the efficiency of gas turbine engines while reducing greenhouse gas emissions.

Slick Sheet: Project
Stanford University is developing a device for the rooftops of buildings and cars that will reflect sunlight and emit heat, enabling passive cooling, even when the sun is shining. This device requires no electricity or fuel and would reduce the need for air conditioning, leading to energy and cost savings. Stanford’s technology relies on recently developed state-of-the-art concepts and techniques to tailor the absorption and emission of light and heat in nanostructured materials. This project could enable buildings, cars, and electronics to cool without using electric power.

Slick Sheet: Project
The University of Pittsburgh (Pitt) is developing a compound to increase the viscosity of—or thicken—liquid carbon dioxide (CO2). This higher-viscosity CO2 compound could be used to improve the performance of enhanced oil recovery techniques. Crude oil is found deep below the surface of the earth in layers of sandstone and limestone, and one of the ways to increase our ability to recover it is to inject a high-pressure CO2 solvent into these layers.

Slick Sheet: Project
Yale University is developing a system to generate electricity using low-temperature waste heat from power plants, industrial facilities, and geothermal wells. Low-temperature waste heat is a vast, mostly untapped potential energy source. Yale’s closed loop system begins with waste heat as an input. This waste heat will separate an input salt water stream into two output streams, one with high salt concentration and one with low salt concentration. In the next stage, the high and low concentration salt streams will be recombined.