Slick Sheet: Project
Georgia Tech Research Corporation is developing a supercapacitor using graphene—a two-dimensional sheet of carbon atoms—to substantially store more energy than current technologies. Supercapacitors store energy in a different manner than batteries, which enables them to charge and discharge much more rapidly. The Georgia Tech team approach is to improve the internal structure of graphene sheets with ‘molecular spacers,’ in order to store more energy at lower cost.

Slick Sheet: Project
The University of Washington (UW) is developing technologies for microbes to convert methane found in natural gas into liquid diesel fuel. Specifically the project seeks to significantly increase the amount of lipids produced by the microbe, and to develop novel catalytic technology to directly convert these lipids to liquid fuel. These engineered microbes could enable small-scale methane-to-liquid conversion at lower cost than conventional methods. Small-scale, microbe-based conversion would leverage abundant, domestic natural gas resources and reduce U.S. dependence on foreign oil.

Slick Sheet: Project
The California Institute of Technology (Caltech) is developing a solar module that splits sunlight into individual color bands to improve the efficiency of solar electricity generation. For PV to maintain momentum in the marketplace, the energy conversion efficiency must increase significantly to result in reduced power generation costs. Most conventional PV modules provide 15-20% energy conversion efficiency because their materials respond efficiently to only a narrow band of color in the sun’s spectrum, which represents a significant constraint on their efficiency.

Slick Sheet: Project
Georgia Tech Research Corporation is developing a high-efficiency concentrating solar receiver and reactor for the production of solar fuels. The team will develop a system that uses liquid metal to capture and transport heat at much higher temperatures compared to state-of-the-art concentrating solar power facilities. This high temperature system will be combined with the team’s novel reactor to produce solar fuels that allow the flexibility to store and transport solar energy for later use or for immediate power production.

Slick Sheet: Project
Vorbeck Materials is developing a low-cost, fast-charging storage battery for hybrid vehicles. The battery cells are based on lithium-sulfur (Li-S) chemistries, which have a greater energy density compared to today’s Li-Ion batteries. Vorbeck’s approach involves developing a Li-S battery with radically different design for both cathode and anode. The technology has the potential to capture more energy, increasing the efficiency of hybrid vehicles by up to 20% while reducing cost and greenhouse gas emissions.

Slick Sheet: Project
Evolva is producing terpenes—energy dense molecules that can be used as high-performance aviation fuels—from simple sugars using engineered microbes. These terpenes will provide better performance than existing petroleum-based aviation fuels. Evolva will draw upon their industrial-scale terpene manufacturing experience to produce aviation sesquiterpenes at a low cost and large scale. Going forward, Evolva will validate the performance of its aviation fuels in unmanned aerial vehicles (UAVs), and further engineer its process to utilize biomass feedstocks.

Slick Sheet: Project
PolyPlus Battery Company is developing an innovative, water-based Lithium-Sulfur (Li-S) battery. Today, Li-S battery technology offers the lightest high-energy batteries that are completely self-contained. New features in these water-based batteries make PolyPlus’ lightweight battery ideal for a variety of military and consumer applications. The design could achieve energy densities between 400-600 Wh/kg, a substantial improvement from today’s state-of-the-art Li-Ion batteries that can hold only 150 Wh/kg.

Slick Sheet: Project
Harvard University is developing an innovative grid-scale flow battery to store electricity from renewable sources. Flow batteries store energy in external tanks instead of within the battery container, permitting larger amounts of stored energy at lower cost per kWh. Harvard is designing active material for a flow battery that uses small, inexpensive organic molecules in aqueous electrolyte.

Slick Sheet: Project
Ceramatec is developing a solid-state fuel cell that operates in an ‘intermediate’ temperature range that could overcome persistent challenges faced by both high temperature and low temperature fuel cells. The advantages compared to higher temperature fuel cells are less expensive seals and interconnects, as well as longer lifetime. The advantages compared to low temperature fuel cells are reduced platinum requirements and the ability to run on fuels other than hydrogen, such as natural gas or methanol.

Slick Sheet: Project
Texas Engineering Experiment Station (TEES) is developing a system to generate electricity from low-temperature waste heat streams. Conventional waste heat recovery technology is proficient at harnessing energy from waste heat streams that are at a much higher temperature than ambient air. However, existing technology has not been developed to address lower temperature differences. The proposed system cycles between heating and cooling a metal hydride to produce a flow of pressurized hydrogen. This hydrogen flow is then used to generate electricity via a turbine generator.