

An ideal biomass crop has.....

- C4 photosynthesis
- Wide Adaptation
- High Yield Potential with regrowth potential
- Water Use Efficiency
- Drought Tolerance
- Pest Resistance
- Good Crop Rotation
- Non competitive with food, feed systems

- Existing Agricultural Infrastructure
- ⊙ Non-invasive
- Winter Standing
- Excellent Genetic Platform
- Composition
 - Starch, sugar, cellulose available
- Perennial Crop

C4 Bioenergy Grasses for the Southern U.S.

Crop	Growth	Propagation	History	Biomass	Notes
Switchgrass	Perennial	Seed	None	Lignocellulose	Problems w/ seed prod. & stand est.
Sugarcane	Perennial	Cutting	Sugar	Sugar, Lignocellulose	cold sus. limits range
Miscanthus	Perennial	Rhizomes	None	Lignocellulose	Propagation limited
Sorghum	Annual	Seed	Grain, Forage	Sugar, Starch Lignocellulose	Drought tolerance

Big Country, Many Environments, Multiple Bioenergy Crops (Source: Department of Energy)

Sorghum as a Bioenergy Feedstock

- Wide Adaptation
- High Yield Potential
- Water Use Efficiency and Drought Tolerance
 - Existing Agricultural Infrastructure
 Multiple Types for Different Production
 Sorghum is the only crop to produce sugar, starch and lignocellulosic biomass

Genetic Platform is available

Annual Crop

Bioenergy Sorghum

Biomass Sorghum

Grain Sorghum

Sweet Sorghum

Sweet Sorghum

- ⊙ Some Grain Yield
- Juicy Stalk
- Highest concentrations of soluble sugar
- ⊙ Highly variable for
 - Maturities (photoperiod sensitivity)
 - Types of Sugar
 - Biomass and Sugar Yield

Biomass Sorghums

- ⊙ Strongly PS
 - Do not flower
 - Long Canopy Duration
 - Enhanced Drought Tolerance
 - Higher Yields
- Structural Carbohydrates
 - Minimal Starch
 - Lower Sugar

Sorghum Improvement

- ⊙ Grown as a Hybrid Crop
 - Seed Parent
 - Pollinator Parent
- Established methodologies applicable to all types of sorghum
- ⊙ Genetic Diversity is the key
- ⊙ Effective Phenotyping Critical

Sorghum Diversity

Texas A&M Agrilife Research Breeding

Good Energy Hybrids have 120 % High-Parent Heterosis

- Pedigree, Backcrossing, Population
- Winter nurseries RGV, MX, PR
- Private Comp. Cooperative Testing
- Products: Germplasm and Parental Lines

Public Research

Seed Parent Development for Energy Hybrids

Photoperiod Sensitive Hybrid Seed Production

Energy Sorghum Breeding

- Seed Parents
 - Short Stature
 - Acceptable seed yield
 - High Sugar
- Pollinator Parent
 - Complementary Height
 - Complementary Maturity
 - Juicy, Sugar
 - Combining Ability

- Either (or both)
 - Disease Resistance
 - Drought Tolerance
 - Lodging resistance
 - Composition
 - Heterosis

Traits

- Biomass Yield
 - Growth and Development
 - Economic Portion of Crop
- Composition
 - Non-structural Carbohydrates
 - Structural Carbohydrates
 - Protein
 - Ash
 - Lipids
- ⊙ Input Use Efficiency
 - Water
 - Nutrient

- Abiotic Stress Tolerance
 - Drought
 - Nutrient
 - Lodging
- Biotic Stress Tolerance
 - Oisease resistance
 - Pest Resistance
 - Lodging
- Evaluation
 - How
 - When

Olson et al., BioFPR, 2012

Biomass Partitioning X Time

Harvest Dates

Traits

- Biomass Yield
 - Growth and Development
 - Economic Portion of Crop
- Composition
 - Non-structural Carbohydrates
 - Structural Carbohydrates
 - Protein
 - Ash
 - Lipids
- ⊙ Input Use Efficiency
 - Water
 - Nutrient

- Abiotic Stress Tolerance
 - Drought
 - Nutrient
 - Lodging
- Biotic Stress Tolerance
 - Oisease resistance
 - Pest Resistance
 - Lodging
- Evaluation
 - How
 - When

Phenotyping – old fashioned ways.....

QTL Analysis of PS Sorghum

Sugar and Ethanol Production

Sugar Yield = Juice (lbs/acre) * Sugar Concentration (g/100ml)

Composition Range (NIR estimates)

	Dietary	Dietary	Dietary
	Lignin	Cellulose	Hemicellulose
Total	9.5 - 20.6	14.7 - 43.4	13.8 – 25
Breeding	13.7 - 20.6	26.1 - 37.1	18.7 - 24.6
Forage PI	9.5 - 17.4	18.8 - 43.4	15.8 – 25
Forage PS	13.9 - 15.9	31 - 32.7	19.9 - 20.9
Grain	14.4 - 17.8	31.9 - 33.2	18.2 - 18.7
Sweet Sorghum	10.8 - 11.6	24.4 - 32.8	15.6 - 21.3

- Significant variation for composition
 - 2X range lignin composition
 - 2.5X range in cellulose
 - 1.5X range in hemicellulose
- Most Variation in breeding germplasm

Growth and Development Harvest Season Duration

May Planting

April Planting

Complementary Crops: U.S. Gulf Coast

- Combined harvest results in a seven month harvest window.
- Different maturity sorghums and sugarcane are critical

