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* Non-Oxidative Glycolysis (NOG)
Bogorad Nature 2013; Lin PNAS 2018
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C.H,,0 > 3 CH,COOH S 3 C,H.OH

* Malyl-CoA Glycerate (MCG) pathway for
CO, fixation vuNat comm 2018
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C.H,,0, + 2 CO, > 4 CH,COOH = 4 C,H.OH



Global net CO, emission pathway (1.5 °climit)

Non-CO, emissions relative to 2010
Global total net CO2 emissions Emissions of non-CO:2 forcers are also reduced
or limited in pathways limiting global warming
to 1.5°C with no or limited overshoot, but
they do not reach zero globally.
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In pathways limiting global warming to 1.5°C 1
with no or limited overshoot as well as in
pathways with a high overshoot, CO2 emissions

30 are reduced to net zero globally around 2050.
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Pathways to Life ‘
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CO, loss is a common problem

in cellular metabolism
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Non-Oxidative Glycolysis (NOG)

CiH,,0, — = 3 CH,COOH



Oxidative Glycolysis

Embden-Meyerhof-Parnas (EMP) pathway

$0.4/Kg Glucose ~——, F6P—— FDP

/
DHAP «—» G3P
\ 2e" Partial oxidation

o C3

O

Pyruvate
| 26 /I\ co, Carbon yield = 66%
Mass vyield O
=50% )LSCOA
Acetyl-CoA

TN

$0.8/Kg Ethanol Butanol Lipids |Isoprenoids


http://en.wikipedia.org/wiki/File:Pyruvic-acid-2D-skeletal.png
http://en.wikipedia.org/wiki/File:Pyruvic-acid-2D-skeletal.png

Theoretical Energy and Mass Yields

C.H,,0, => 2C,H.O + 2CO,

energy % mass %

2540 2 x 1235 kJ/mol 97.24% 51%

CH,,0, > C,H,,0 + 2CO,

2540 2455 kJ/mol 96.6% 41%

2CH,,0, 2 CH, + 4CO, + CO

2x 2540 4543 klJ/mol 89.4% 27%

Jet fuel



Non-oxidative Glycolysis (NOG)

Glucose = ~ F6P
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Two Modes of Non-Oxidative Glycolysis (NOG)

% AcP

F6P

fb/

F6P phosphoketolase
F6P > AcP + E4P

F6P

EAP tal

fpkf\

F6P

G3P  S7P

AcP

w%

DHAP

tp/

fka/\ / rpi
G3pP ;5 / X5P
tkt

Net reaction:

X5P phosphoketolase
X5P 2> AcP + G3P

F6P

E4P tal

FBP
xpk
fba'\_ DHAP , ;/
o3p L 63 xp /fp’
&5 Ru5P
X5P D
AcP
F6P = 3 AcP

Bogorad et al. Nature 2013



Construction and Evolution of an NOG E. coli strain
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Construction and Evolution of an NOG E. coli strain

NOG
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Laboratory evolution

1:1000 inoculation

Initial Strain 7 % /Doy 2% /Tay 3N / Day ¥ 7 Day 54 /D.Iam

Limiting Growth in
rich minimal
media media

Mutations —
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Rational Pathway Design

Adaptive Evolution

Characterization

Deleting
Regular
Glycolysis

Use directed strain evolution to force the cell

| JCL16

(6) Deleted gapB and

(9) Deleted icIR to up-

(18) Determined Xpk, Tkt and

(22) Determined Tktis

(26a) Evolutionin
glucose minimal
medium plate

v

l pgk in EMP and zwf, regulate GS and Tal are the most limiting ] still limiting by in vitro
edd, and eda in ED overexpressed pck (Fig. 3) =»| enzymes in the NOG pathway pathway assay (Fig. 5B)
(1) Deleted gapA and pathways to remove l using in vitro pathway assay
mgsA in EMP and MG potential suppressor (Fig. 5A)
pathways, resultingin genes, resulting in (10) Deleted pfkA and poxB
PHL2. PHL2 required SGC PHL7. to prevent potential futile
to grow cycles
l A
(2) Expressed xpk, the only (11) Integrated xpk to
. ; - 19) Expressed xpk, glucose L
missing enzyme in NOG, genome, resultingin (
but strain failed to grow in PHL13. PHL13 can growin tulptal((ie gle;etfl (g”)’hglkl’ tkt?a - (fit);“r;h;(’t:’:ﬁressid
glucose minimal medium glucose minimal medium al and g/pX through plasmi and 1 roug
| with acetate (slow) pPL274 plasmid pTW371
(3b) Evolution in
glucose minimal
liquid medium + \ (163) 20) !
(3a) Evolution ~ SGC (7) Evolution in glucose (12) Evolution in glucose (14) Evolution in c)) ) T T T
in glucose with expressed minimal liquid medium minimal liquid medium + (| glucose minimalliquid | | | E‘g]’[‘]‘ggg’;'” E‘;‘I’L‘g(')osl'” ( m)inimal mediurg e
minimal liquid s + SGC w/ wio See TSI e FD minimal liquid | [ minimal liquid
medium + i expressed mutD5 w/ expressed mutD5 4A and Fig. S1A) T e
SGC (4b) Evolved strain
capable of glucose
growth
¥
(25) Isolated and
s characterized evolved
(4a) Failed (5) Growth due to @ Faledtogrowin | | (13) Failed [ (5)1solated and [ (7 Faled | [ (21) Failed | S;i’ga"; ':gfg;) e
suppressor glucose minimal characterized evolved ca;1 grow in g;lucose
mutations medium strain NOG6. NOG6 can (16b) Identified minimal medium (Fig. 6)
growinglucose = | gynthetic Pck promoter
minimal medium with modification. Apyk. l
acetate faster than  f—p ptsG and acs mutated (26b) Identified xpk on

“Loophole”
mutations

Lin et al. PNAS 2018

PHL13 (Fig. S1BC).

with IS insertion (Table
1 and 2, Fig. 3C and
Fig. S1D)

pPL274, rpoS, fadR,
were mutated with IS
insertion (Table1 and 2)

(27) Isolated and
characterized
evolved strain

NOG26 (Fig.7 and
83). NOG26 can grow
in glucose minimal
medium faster than
NOG21 (Fig. 6)

14




Rational Pathway Design

Adaptive Evolution

Characterization

| JCL16

Deleting
Potential

Loopholes

(6) Deleted gapB and

(9) Deleted icIR to up-

(18) Determined Xpk, Tkt and

(22) Determined Tktis

(26a) Evolutionin
glucose minimal
medium plate

v

l pgk in EMP and zwf, regulate GS and Tal are the most limiting ] still limiting by in vitro
edd, and eda in ED overexpressed pck (Fig. 3) =»| enzymes in the NOG pathway pathway assay (Fig. 5B)
(1) Deleted gapA and pathways to remove l using in vitro pathway assay
mgsA in EMP and MG potential suppressor (Fig. 5A)
pathways, resultingin genes, resulting in (10) Deleted pfkA and poxB
PHL2. PHL2 required SGC PHL7. to prevent potential futile
to grow cycles
2) Expressed xpk, the onl (11) Integrated xpk to A
( n)ﬂssﬁw enzym‘; in NOG’y genome, resulting in (19) Expressed xpk, glucose 4
but strain failed to grow in PHL13. PHL13 can growin tulptal((ie gle;etfl (g”)’hglkl’ tkt"’_a - (fit);“r;h;('t:’:ﬁ’essid
glucose minimal medium glucose minimal medium al and g/pX through plasmi and 1 roug
| with acetate (slow) pPL274 plasmid pTW371
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glucose minimal
liquid medium + \ (163) 20) !
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medium + i expressed mutD5 w/ expressed mutD5 4A and Fig. S1A) T i
SGC (4b) Evolved strain
capable of glucose
growth
¥
(25) Isolated and
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(4a) Failed (5) Growth due to (8)Failedto growin | | (13) Failed [ (15 1solatedand [ (7)Failed |[ (21)Failed ] S,f{;",‘ ':,?fg;) ('Nl'z:)l;)éezl:,
suppressor glucose minimal characterized evolved cah grow in g;lucose
mutations medium strain NOGG. NOG6 can (16b) Identified minimal medium (Fig. 6)
growinglucose = | gynthetic Pck promoter
minimal medium with modification. Apyk. l
jeetate Taster f1an || ptsG and acs mutated (26b) Identified xpk on

No loopholes
But no growth

Lin et al. PNAS 2018

PHL13 (Fig. S1BC).

with IS insertion (Table
1 and 2, Fig. 3C and
Fig. S1D)

pPL274, rpoS, fadR,
were mutated with IS
insertion (Table1 and 2)

(27) Isolated and
characterized
evolved strain

NOG26 (Fig. 7 and
83). NOG26 can grow
in glucose minimal
medium faster than
NOG21 (Fig. 6)
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Rational Pathway Design

Adaptive Evolution

Characterization

JCL16

l

(1) Deleted gapA and
mgsA in EMP and MG
pathways, resulting in
PHL2. PHL2 required SGC
to grow

Tune-up desired pathways,

Delete potential futile cycles

!

(6) Deleted gapB and
pgk in EMP and zwf,
edd, and eda in ED
pathways to remove
potential suppressor
genes, resulting in
PHL7.

(9) Deleted icIR to up-
regulate GS and
overexpressed pck (Fig. 3)

'

(10) Deleted pfkA and poxB
to prevent potential futile
cycles

¥

=»] enzymes in the NOG pathway

(18) Determined Xpk, Tkt and
Tal are the most limiting

using in vitro pathway assay
(Fig. 5A)

(22) Determined Tktis
still limiting by in vitro
pathway assay (Fig. 5B)

A

(26a) Evolutionin
glucose minimal
medium plate

(2) Expressed xpk, the only (11) Integrated xpk to
issi i enome, resultingin (19) Expressed xpk, glucose 4
gussmg_ e NOG’ PHE13 PHL13 can grow in uptake genes (glf), glk, tkt2, (23) Furtherexpressed
ut strain failed to grow in . =L gro tal and gloX th hol ia - e e h
glucose minimal medium glucose minimal medium al and g/pX through plasmi and roug
| with acetate (slow) pPL274 plasmid pTW371
(3b) Evolution in
glucose minimal
liquid medium + ¥ (163) 20) !
(3a) Evolution ~ SGC (7) Evolution in glucose (12) Evolution in glucose (14) Evolution in o S AV EVOIBoNT olicose
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minimal liquid e + SGC w/wio Sec AT R R (G, minimal liquid | [ minimal liquid
medium + ) expressed mutD5 w/ expressed mutD5 4A and Fig. S1A) T .
SGC (4b) Evolved strain
capable of glucose
growth
L 2
(25) Isolated and
s characterized evolved
(4a) Failed (5) Growth due to (8) Failed to grow in (13) Failed (15) Isolated and [ (7 Failed |[ (21)Failed ] SFtI' il ':r?fszg) (L?éezi”
suppressor glucose minimal characterized evolved cg;] growin g;lucose
mutations medium strain NOG6. NOG6 can (16b) Identified minimal medium (Fig. 6)

Lin et al. PNAS 2018

growin glucose
minimal medium with
acetate faster than
PHL13 (Fig. S1BC).

Growth in

synthetic Pck promoter
modification. Apyk.
ptsG and acs mutated
with IS insertion (Table
1 and 2, Fig. 3C and
Fig.S1D)

A\ 4

|

(26b) Identified xpk on
pPL274, rpoS, fadR,
were mutated with IS
insertion (Table 1 and 2)

(27) Isolated and
characterized
evolved strain

NOG26 (Fig.7 and
S$3). NOG26 can grow
in glucose minimal
medium faster than
NOG21 (Fig. 6)

Glucose + Acetate
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Rational Pathway Design

Adaptive Evolution

Characterization

JCL16 |

l

(1) Deleted gapA and
mgsA in EMP and MG

pathways, resulting in
PHL2. PHL2 required SGC
to grow

!

(6) Deleted gapB and
pgk in EMP and zwf,
edd, and eda in ED
pathways to remove
potential suppressor
genes, resulting in
PHL7.

(9) Deleted icIR to up-
regulate GS and
overexpressed pck (Fig. 3)

'

(10) Deleted pfkA and poxB
to prevent potential futile
cycles

¥

Use pathway assays to
identify limiting enzymes
De-bottlenecking

=»] enzymes in the NOG pathway

(18) Determined Xpk, Tkt and
Tal are the most limiting

using in vitro pathway assay
(Fig. 5A)

(22) Determined Tktis
still limiting by in vitro
pathway assay (Fig. 5B)

A

(26a) Evolutionin
glucose minimal
medium plate

(2) Expressed xpk, the only (11) Integrated xpk to
issi i enome, resultingin (19) Expressed xpk, glucose 4
gussmg_ e NOG’ PHE13 PHL13 can grow in uptake genes (glf), glk, tkt2, (23) Furtherexpressed
ut strain failed to grow in . =L gro tal and gloX th hol ia - e e h
glucose minimal medium glucose minimal medium al and g/pX through plasmi and roug
| with acetate (slow) pPL274 plasmid pTW371
(3b) Evolution in
glucose minimal
liquid medium + ¥ (163) 20) !
(3a) Evolution ~ SGC (7) Evolution in glucose (12) Evolution in glucose (14) Evolution in o S AV EVOIBoNT olicose
in glucose with expressed minimal liquid medium minimal liquid medium + glucose minimalliquid | || =i 0000 iitos i [madiimplate
minimal liquid e + SGC w/wio Sec AT R R (G, minimal liquid | [ minimal liquid
medium + ) expressed mutD5 w/ expressed mutD5 4A and Fig. S1A) T .
SGC (4b) Evolved strain
capable of glucose
growth
L 2
(25) Isolated and
s characterized evolved
(4a) Failed (5) Growth due to (8) Failed to grow in (13) Failed (15) Isolated and [ (7 Failed |[ (21)Failed ] SFtI' il ':r?fszg) (L?éezi”
suppressor glucose minimal characterized evolved cg;] growin g;lucose
mutations medium strain NOG6. NOG6 can (16b) Identified minimal medium (Fig. 6)

Lin et al. PNAS

2018

growin glucose
minimal medium with
acetate faster than
PHL13 (Fig. S1BC).

synthetic Pck promoter
modification. Apyk.
ptsG and acs mutated
with IS insertion (Table
1 and 2, Fig. 3C and
Fig.S1D)

A\ 4

|

(26b) Identified xpk on
pPL274, rpoS, fadR,
were mutated with IS
insertion (Table 1 and 2)

(27) Isolated and
characterized
evolved strain

NOG26 (Fig.7 and
S$3). NOG26 can grow
in glucose minimal
medium faster than
NOG21 (Fig. 6)

Growth in
Glucose
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Rational Pathway Design

Adaptive Evolution

Characterization

JCL16

l

(1) Deleted gapA and
mgsA in EMP and MG
pathways, resulting in
PHL2. PHL2 required SGC
to grow

!

(6) Deleted gapB and
pgk in EMP and zwf,
edd, and eda in ED
pathways to remove
potential suppressor
genes, resulting in
PHL7.

(9) Deleted icIR to up-
regulate GS and
overexpressed pck (Fig. 3)

'

(10) Deleted pfkA and poxB
to prevent potential futile
cycles

¥

=»] enzymes in the NOG pathway

(18) Determined Xpk, Tkt and
Tal are the most limiting

using in vitro pathway assay
(Fig. 5A)

A

(22) Determined Tktis
] still limiting by in vitro
pathway assay (Fig. 5B)

(26a) Evolutionin
glucose minimal

medium plate

(2) Expressed xpk, the only (11) Integrated xpk to
issi i enome, resultingin (19) Expressed xpk, glucose 4
gussmg_ e NOG’ PHE13 PHL13 can grow in uptake genes (glf), glk, tkt2, (23) Furtherexpressed
ut strain failed to grow in . =L gro tal and gloX th hol ia - e e h
glucose minimal medium glucose minimal medium al and g/pX through plasmi and roug
| with acetate (slow) pPL274 plasmid pTW371
(3b) Evolution in
glucose minimal
liquid medium + ¥ (163) 20) !
(3a) Evolution ~ SGC (7) Evolution in glucose (12) Evolution in glucose (14) Evolution in o S AV EVOIBoNT olicose
in glucose with expressed minimal liquid medium minimal liquid medium + glucose minimalliquid | || =i 0000 iitos i [madiimplate
minimal liquid e + SGC w/wio Sec AT R R (G, minimal liquid | [ minimal liquid
medium + ) expressed mutD5 w/ expressed mutD5 4A and Fig. S1A) T .
SGC (4b) Evolved strain
capable of glucose
growth
L 2
(25) Isolated and
s characterized evolved
(4a) Failed (5) Growth due to (8) Failed to grow in (13) Failed (15) Isolated and [ (7 Failed |[ (21)Failed ] SFtI' il ':r?fszg) (L?éezi”
suppressor glucose minimal characterized evolved cg;] growin g;lucose
mutations medium strain NOG6. NOG6 can (16b) Identified minimal medium (Fig. 6)

Lin et al. PNAS

2018

growin glucose

minimal medium with

acetate faster than
PHL13 (Fig. S1BC).

synthetic Pck promoter
modification. Apyk.
ptsG and acs mutated
with IS insertion (Table
1 and 2, Fig. 3C and
Fig.S1D)

A\ 4

|

(26b) Identified xpk on
pPL274, rpoS, fadR,
were mutated with IS
insertion (Table 1 and 2)

(27) Isolated and
characterized
evolved strain

NOG26 (Fig.7 and
S$3). NOG26 can grow
in glucose minimal
medium faster than

NOG21 (Fig. 6)

Improved
growth




Pathway assay to identify limiting

enzymes

Whole pathway assay using NOG6 crude extract
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Construction and Evolution of an NOG E. coli strain

Glucose Glucose
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Important mutation occurring during

evolution

AptsG —— EIlP [ — CyaA] — cAMP |

Evolution in glucose minimal Intracellular cAMP concentration Extracellular cAMP concentration
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Fine-tuning of enzyme activity

Ensemble Modeling for Rubustness Analysis

EMRA on GS, TCA and Pck cycle
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Carbon distribution
(mol/mol fed carbon )
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An E. coli strain that uses solely NOG for sugar catabolism
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Economy of oxidative and non-oxidative

glycolysis for making ethanol

Traditional
fermentation

H,0, > 3CH.O +3Co,

sugar price 250.4/Kg ethanol price = $0.8/Kg

http://www.nasdag.com/markets{sugar.aspx

NOG C:H,,0¢ Jr@H2 - 3C,H.O + 3H,0

sugar price

: >
H2 price 90

H2 price < S3/Kg

When (=0.133) Then it makes sense to use NOG + H2.

28



Reductive Fermentation

(H,-assisted CO, fixation)

Traditional fermentation

CH,0, > 2C,H.OH + 2CO,

+  6H,+2C0, > CH.OH + 3H,0

NOG: Reductive

termention . CcHp,0p +6H, > 3C,H.OH + 3 H,0
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CO, Saving

Non-oxidative

noo CeH,0¢ +6H, > 3CH.OH+ 3H,0
Methene 1 5 CH, + 3 H,0 2 1.5C0O, + 6 H,

steam reforming

C.H,,0 +1.5CH, > 3 C,H.OH [+ 1.5 CO,

oo 1.5 CcH.,0, = 3C,H.OH # 3CO,

30



Methane upgrading

Tediional  CH,,0, > 2 C,HOH + 2 CO,

Fermentation

+ Methane 0.5 C02+ 1.5 CH4 > CZHSOH

upgrading

NOG
+

sen  CeHy,0p +1.5CH, > 3 C,H.OH + 1.5 CO,

Reforming
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Methane upgrading

AG° Energy* |Carbon®

Reactions (kJ/mole) | efficiency | yield Comment

1) CeH1206 --> 2 C,HgO + 2 CO, -228.4 0.97 66.70% Current fermentation

0 Proposed Methane
2) 0.5 CO, + 1.5 CH4 --> C,H6O 100.05 1.03 133% upgrading (AG® >0)

Proposed reductive

= - - 0,
3) =1)+2) CgH1206 + 1.5 CHy --> 3 C;H6O + 1.5 CO;, 128.35 0.99 80% fermentation

4) 2CH4 + Oy--> C;HgO+ H,0 -309.1 0.77 100% REMOTE

*Energy efficiency is calculated from the lower heating value (LHV) of combustion of
products divided by the LHV of the reactants.

l AG and AH°,,, values were taken from Table 2

# Carbon yield calculation does not include CO,.
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Malyl-CoA Glycerate (MCG) pathway

for CO, fixation

CcH,,0g +2 CO, + 4”H” — > 4 CH,COOH

Pyruvate + CO, —— 2 Acetyl-CoA

Glyoxylate —— Acetyl-CoA

33



Comparison of different carboxylases

Carboxylase | | Carbon Function in natural CO, fixation Oxygen sensitivity | | Specific Activity
abbrev. species Gy pathway (pmol/min/mg)
RuBisco o, No Yes No, but has 3.57
(CBB) oxygenase activity
ACC HCO; ATP, biotion Yes No 18"™
(HP bi, HP/HB)
PCC HCO; ATP, biotion Yes No 29.6"
(HP bi, HP/HB)
PYC HCO ATP, biotion No No 32.4")
(mainly in anaplerosis )
PPC HCO5 No Yes No 35.2"
(DC/HB)
PFOR co, ferredoxin, TPP  Yes Yes <1
(WL, rTCA, DC/HB)
KOR co, ferredoxin, TPP  Yes Yes <1
(rTCA)
CCR Co, NADPH No No 130"

(found in ethylmalonyl-CoA pathway)




Using Ppc for CO, fixation

Ppc:

Phosphoenolpyruvate carboxylase Problem:

M Efficient * OAA can not be converted to general
M Favor carboxylation direction building blocks without carbon loss

B No oxygen sensitivity
M Simple Cco, co,
? ?
[m————— —Z=== Pyruvate (C3) --—"=--»Acetyl-CoA (C2)

0\ /o- MO'
: Pl : In most cells
OJ\I( ¢ ° ;» S -+ Asp Lys Met Thr

PEP (C3) OAA (C4)

o
L
()
O
w
o
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Reversal of glycoxylate shunt allows

fixation of CO2 using Ppc

(2) HCO;
"

| _—— (2) PEP

(2) oxaloacetate
(2) 2-p-glycerate — From CBB

(2) NADH
ATP
(2) malate MCG
1\ glycerate
(2) AT, (2) CoA |\ A
\
NADH
-C
f2Fmay O\A tartronate
semialdehyde
(2) Acetyl-CoA ‘/(2) glyoxylate e
a
€O,

C,H,0; +2 CO, +4”H” ——> 4 CH,COOH
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Constructing MCG in E. col,

(2) NADH

(2) Oxaloacetate
2-p-glycerate €—— | ¥ Glc

(2) NADH
(2) NADH ATP
(2) Succinate <—x/— (2) Fumarate €———— (2) Malate ivobmate
AfrdB

(2) ATP, (2) CoA 4glcB
AaceB

NADH

Tartronate
(2) NADH semialdehyde

Ethanol —L (2) Acetyl-CoA

(2) Glyoxylate__’<'

CO,

ATP

Acetate
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MCG in E. coli

E. coli, AaceB AglcB AfrdB AldhA ApstG
LB + 20 mM glucose + 100 mM HCO,~

12.2

HY41 | HY41 HY42 HY43 HY48 HY49 HY6E8
LB LB + 20 mM Glc + 100 mM HCO3
Mtk/Mcl - — + + + + +
Gcl/Hyi - - - + + + +
GarkK - - - - + + +
Mdh - — — - - +
Ppc = - - - - - +

(Corrected) molar yield (C2/C8)

m Ethanol
" Acetate
Total C2
Molar yield (C2/C6)

m Corrected molar
yield (C2/C6)
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c E. coli, AaceB AglcB AfrdB AldhA ApstG
LB + 20 mM 13C-glucose(M+6) + 100 mM
13C-HCO, (M+1)

60 54.9 5 7 3

B Ethanol(M+2)

m Acetate(M+2)

u Total C2(M+2)

Molar yield (C2/C6)

B Molar yield (C2
M+2/C6 M+6)

C2 (M+2) production (mM)

HY41 HY43 HY68
Mtk/Mcl - + +
Gcl/Hyi - + +
GarK/Mdh/Ppc - - +




MCG augments CBB pathway

(2) HC{’;‘ Pgm (3) ATP
" ks Ru5P
(2) oxaloacetate \
(2) 2-p-glycerate «— -
(2) NADH
. (5) NADPH ok
(2) malate MCG CBB
glycerate
(2) ATP, (2) CoA G3P S1,7P — , STP
i DHAP
2 lyl-CoA
(2) malyl-Co tartronate
semialdehyde
(2) Acetyl-CoA (2) glyoxylate /

Per Ac-CoA Synthesis NAD(P)H ATP
from CO, consumption consumption
CBB+ PDH 4 7

CBB+ NOG 4 6
| CBB+ MCG 4 5.5

Rubisco The theoretical carbon
turnover yield
3 66% (Ac-CoA/C3)
2 100% (1.5 Ac-CoA/C3)
1.5 100% (2 Ac-CoA/C3+C1)
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MCG pathway recycles photorespiration product

HCO,
PEP
P
o Eno
oxaloacetate
ADL 2-p-glycerate
Mdh ATP
Gk
malate glycerate
Mtk
ATP, CoA Tsr
NADH
malyl-CoA tartronate
Mcl semialdehyde
Acetyl-CoA glyoxylate gl
NADH Coz

Gdh

(@]
Photorespiration ————— Glycolate , ! _on

. NAD(P)H ATP : .

Per Ac-CoA Synthesis from glycolate (P) . . The theoretical carbon yield
consumption  consumption

Native photorespiration pathway'’ 0 0 50% (1 Ac-CoA/2 glycolate)

The bacterial glycolate assimilation route?’ -2 0 50% (1 Ac-CoA/2 glycolate)

The MCG pathway 1 2 100% (1 Ac-CoA/1 glycolate)



MCG in S. elongates increased CO,,

fixation

S. elongatus PCC7942 S. elongatus PCC7942

55 35
——WT McG-142 *

0 - : McG-145 —=—McG-140

25

Bicarbonate concentration (mM)
8

35
30

_ 15

| 1

0.5

20 0

25
0 2 q 6 8 10 12 14 hr McG-142 McG-145 McG-140

Bicarbonate assimilation rate
(mM/hr/OD730)
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