Pricing in a Stochastic Environment

Glen Swindle
Scoville Risk Partners

June 18, 2019
The Purpose of (Electricity) Markets

Commodities Markets
- Spot price formation which clears supply and demand.
- Efficient deployment of capital.

Electricity Markets
- More than just real-time balance of supply and demand.
- Reliability
 - Ancillaries (short time-scale)
 - Capacity (long time-scale)
- Investment
 - Cost: Build assets that are likely to lower cost.
 - Locational: Try to build assets where they are needed.

Transparency and stability of market mechanics yields more efficient investment.
What Trades and Why?

Forward Energy Markets

- Buy/sell electricity for a future delivery month.
 - Delivered uniformly over a bucket (e.g. peak hours).

- The following figure shows PJM Western Hub forwards.
 - Each value represents the price ($/MWh) at close-of-business for uniform delivery of on-peak power over the month.
 - Derived from exchange settles (ICE,CME) and Bloomberg.
What Trades and Why?

Forward Energy Markets

- Forward prices “exist” for most delivery zones.
- Liquidity can vary substantially.
 - Benchmarks are liquidity centers—in this case PJMWH.
- Forward markets depend on stability and integrity of ISO/RTO price formation.
What Trades and Why?

Forward Energy Markets

- The forward price is the market value for the distribution of future spot prices.
 - This figure shows a simulated (to be discussed) distribution of PSEG monthly average peak spot prices for Jul2020.

- The driver for trading activity is the management of end-user risks.
 - Companies wanting to protect futures cashflows by hedging.
 - Lenders requiring asset developers to hedge cashflows.

- Forwards are the risk transfer work horses.
 - Many types of derivatives trade, but all are “anchored” to forwards.
What Trades and Why?

High-Dimensional Market

Why do all of these forwards trade? Under the LMP paradigm:
- People want hedges as “close” to their assets as possible.
- Generation assets (and some loads) settle on nodal spot prices.
- Most load settles at zonal prices.

Project Finance Example
- Asset build funded by debt; lenders insist on a hedge that protects the asset cashflows.
- The hedge is a derivative (commonly heat rate call options or revenue puts).
- Asset cashflows driven by nodal prices; but dealers insist on zonal (or hub) prices for the hedge.
- Modeling is required to ensure that:
 - The interest payments are covered by the annuity from the hedge.
 - The asset cashflows cover the payoff of the hedge.
Things get complicated quickly.

- No known asset produces a constant volume with certainty.
- Conventional generation assets are complicated things.
- Nodal prices can behave erratically.
- Short load positions are inevitably stochastic in nature.

Models fill gaps.

- The results below are simulated payoffs for a CCGT and a load transaction.
- The analytics required to produce such results are nontrivial.
Typical Organization of Simulation Framework

Weather Simulations

where e.g.:

\[\tau_d = \mu_d + \sigma_d X_d \]

- \(\mu_d = \alpha_0 + \alpha_1 (d - d_0) + \sum_{k=1}^{K} c_k \sin(2\pi k\phi(d)) + \ldots \)
- Calibrated to decades of quasi-stationary historical data.
- The residuals \(X \) are often modeled as ARMAs.
- Correlation structure between different locations is nontrivial

Demand Simulations

\[L_d = \alpha + \beta (d - d_0) + \sum_{k=1}^{K} \theta^k (\tau_d) + \sigma_d e_d \]

where \(\theta \) mollifies temperatures.

- Calibrated to a few years of historical data.
- Load growth handled by drift term.
- Additional seasonality can be handled by Fourier terms.
- Hourly loads from stochastic shaping coefficients \(s_d \):

\[\bar{L}_d = \bar{s}_d L_d \]

Fuel Spot Price Simulations

Spot Price Simulations

Regression Based (bucket level):

\[\log \left[\frac{P_d}{\bar{P}_d} \right] = \alpha + \gamma \bar{p}_d + \sum_{k=1}^{K} \theta^k (\tau_d) + e_d \]

Hourly prices:

\[\bar{p}_d = \bar{s}_d P_d \]

Stack Based:

\[\bar{p}_d = \Psi s \left[\bar{L}_d \bar{F}_d \right] + \bar{e}_d \]
Coupling Across Many Processes

- To understand a portfolio (or an ISO/RTO) a large number of processes must be realistically coupled.

- For weather parametric forms (e.g. standard time series) are very challenging—replace with bootstrap of residuals.

- For spot prices hierarchical organization renders regressions/simulations tractable.

- Each bond represents a regression, and residuals are coupled via bootstrap.
Some Practical Considerations

- All of the analysis above presumes stability of physical system.
 - Discontinuities in price formation algorithms or topology are challenging.
 - Partially mitigated by calibration to traded market prices.

- Non-Energy Costs:
 - Capacity markets:
 - Annual auctions provide a visible well-defined value(cost) to generation(load).
 - Limited trading activity—difficult to hedge.
 - Limited tenor—roughly 3 years.

- Ancillaries:
 - Essentially no hedging activity.
 - Difficult to model with the precision required to use energy as proxy hedges.
 - “Review invoices.”
As Things Stand Now

Deterministic algorithms (SCED) minimize cost:

- **Inputs:**
 - Forecasted loads.
 - Generation offers (including constraints).
 - Anticipated system configuration and contingencies.

- **Results:**
 - Locational marginal prices (shadow prices for incremental increase in locational demand).
 - Ancillary prices arising from rules-based requirements.

Comments:

- **Sources of Randomness:**
 - Load *has been* the primary source of “Gaussian” randomness.
 - Generators are the primary sources of “Poisson” randomness—outages.

- **Cost of Randomness:**
 - Handled (in arrears) via unit flexibility, ancillaries and uplift.
 - Load (the short) pays for most of it.

- **Incentives:**
 - Load is penalized for forecasting errors.
 - Generators are rewarded for reliability by capacity payments and energy/ancillary margin.
Price Formation in a Stochastic Setting

Sources of Randomness

Intermittency in renewables production is a new and pronounced source of randomness.

- The nature of the hourly dynamics differs from load.
 - Load is primarily temperature driven.
 - This figure shows the results of factor analysis of forecasting errors at KABI (Abilene).
 - The time series used are 24 hourly forecasting errors (-1d) for temperature and wind from 2015 to the present.
 - Note the slower decay in wind spectrum—dynamics of wind forecasting error is “rougher.”
 - Similar at other locations (e.g. KPHL).
Non-LMP “Stylized” Setting

Setup
- 24 hour setting.
- Dispatchable Generation
 - Allowed generation levels $\tilde{g}_j \in {\cal A}_j$ for $j = 1, \ldots, J$.
 - Cost $c_j(\tilde{g}_j)$; depends on generation levels, fuels and constraints.
- Load Net of Intermittent Supply
 - $\tilde{L}_* = \sum_{k=1}^K \tilde{L}_k$.
 - Each \tilde{L}_k is a stochastic 24-dimensional process.

Deterministic Optimization (The “current” way)
- Minimize the cost to serve the expected net load $\bar{\mu}_L$:

$$C(\bar{\mu}_L) = \min_{\hat{g} \in \bar{A}_*} \sum_j c_j(\tilde{g}_j) \quad \text{where} \quad \bar{A}_* = \left\{ \hat{g} \in \bar{A} : \bar{1}^t \hat{g} = \bar{\mu}_L \right\}$$

- Spot prices are marginal incremental cost: $\tilde{p} = \nabla_{\bar{\mu}_L} C(\bar{\mu}_L)$.
Non-LMP “Stylized” Setting

- You need to decide before \bar{L}_* is realized how you are going to handle matters.
- A single set of clearing prices cannot simultaneously balance loads while rewarding “good” participants and penalizing the “bad”.
- Introduce generation offers π_j to participate in the DA market—a “daily capacity” market.
- ISO/RTO chooses which to accept—accept flag $F_j \in \{0, 1\}$.
- The new optimization problem is:

$$
\min_{\vec{F}} \left(E \left[\min_{g. \in A_*} \sum_j c_j (\vec{g}_j) \right] + \vec{\pi}^T \vec{F} \right)
$$

where $A_* = \begin{cases} g. \in A. & \vec{1}^T g. = \bar{\mu}_{L*} \\
\vec{g}_j \equiv 0 & \text{if } F_j = 0 \end{cases}$

- This is saying that you select generators competively based upon their bids π and their flexibility.
- Spot prices remain the marginal cost of the realized load \bar{L}_*: $\vec{p} = \nabla_{\bar{L}_*} C (\bar{L}_*)$.
- The marginal cost of each factor (PCA) of the total load \bar{L}_* is computed by perturbation.
- The “daily capacity” cost is allocated to each L_k based upon contribution to each factor.
Price Formation in a Stochastic Setting

Non-LMP “Stylized” Setting

- On the Positive Side
 - A key input to such an approach is credible modeling of the joint behavior of a large number of contributing loads and supply \vec{L}_k. This is already within reach of existing technology.
 - The calculation of the marginal capacity cost to changes in the covariance of \vec{L}_* is directly analogous to marginal VaR calculations in other areas of finance.

- Neutral
 - The calculation of marginal capacity costs will require dealing with the “lumpiness” of the $\vec{\pi}^t \vec{F}$ term. This is also an issue that is being dealt with in existing dispatch calculations.
 - It is likely that constraints on bid behavior will be required—restrictions on who can submit positive offers and how high such can be. Similar issues already arise in existing capacity markets.

- On the Negative Side
 - Balancing accurate modeling of the joint loads \vec{L}_k with transparency to those on the receiving end of the daily capacity cost will be challenging.
 - The calculations required for stochastic optimization are daunting—even in say a lower-dimensional zonal setting.

- A Likely Tradeoff
 - Keep LMP as is and deploy a calculation like the above to reward flexibility on longer length scales.
 - Roll LMP back to say zonal prices to facilitate a single spot price / flexibility price calculation.