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Introduction

Imaging Small Targets in High-Loss N
Environments: '

1. Imaging Depth ~ Signal Quality
2. Resolution (Cross and Axial)
3. Contrast

= Safety (e.g. tissue heating in medical
Imaging)

10um

9mm

* Imaging Artifacts

= System cost and portability 3cm

Edrich, “Imaging Thermograms at Centimeter and
Millimeter Wavelengths,” Annals New York
Academy of Sciences, 1980

Stanford DC-THz Lab



Microwave Contrast
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= Dielectric Properties at Microwave Frequencies (e.g. water content)
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Penetration/Resolution (mm)

Microwave Radar Trade-offs

" Tradeoff in Penetration Depth & Resolution

* No additional degree of freedom for contrast
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Radar Cross-Section

» LF Reconstruction—> ill-posed, Reduced
scattering from targets, lost resolution
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The Thermo-Elastic Response

UPON THE PRODUCTION AND REPRODUCTION OF
SOUND BY LIGHT. lllumination

laser pulses

Ultrasonic
transducer

By ArexanpeEr GramAM BreLI, PE.D,

(4 Paper vead before the American Association for the Advancement of Science, in
| Boston, on the 2Tth August, 1880.)

PA waves

absorbers

.. While working on the “Photophone” Tissue

boundary
Junjie Yao, Contrast Media Mol Imaging, 2011.

" (Generation of stress due to heating

" vy _:speed of sound

[ . thermal expansion coefficient

= ,BBH(r 1)

V a,_ Jt = (' specific heat capacity

( ‘)

p(rt) : stress
H(rt) : heating function

Can we use microwave as “heat source”?
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Thermoacoustic Imaging

* Microwave Imaging | |® Ultrasound Imaging

= Spectral Information = Structural Information
= Contrast = Resolution
\ - ./
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Thermoacoustic Imaging
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Imaging Examples

After Reconstruction

Immersion Transducers

0.5MHz

20
40
60|

80 . :

100

120 Resolution approaching

140 millimeters

20 40 60 80




DARPA awards three contracts to detect IEDs hidden in

mud, meat, and dead animals

April 12, 2013
By John Keller
Editor

Non-Contact Detection in Material with Very High Loss

7 - 25 ARLINGTON, Va., 12 April 2013. Improvised explosive
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packaged in mud or meat.

http://www.militaryaerospace.com

1 ** Arizona in Tucson, Ariz.
~~ . Va, are working on the [¢

. device (IED) experts at three research organlzatlons are
workmg to develop non- §

© hidden in opaque media
’ mud, meat, and animal diis
| the U.S. Defense Advani

~ Arlington, Va. o

Quasar Federal System:

Detection at Standoff (M
and imaging methods to



Capacitive Micromachined Ultrasonic Transducer
CMUT

Flexible Top Plate/Electrode
AC

Schematic of a CMUT Cell

In a typical realization, many CMUT cells operate in parallel.
CMUT Cells can be circles, squares, rectangles, tent structures, etc.

Circular cells Hexagonal cells Tent cells



Fabricated Airborne CMUTs
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Photograph of a completed 4” wafer Laser Doppler vibrometer measurement results

= Optimized transducer/ signal chain for sensitivity
= Custom CMOS RX + vented CMUTs w/ squeeze film damping
* Minimum detectable pressure: 240 puPa (unfiltered)
= Within 6dB of the mechanical noise floor
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Imaging Setup
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Rexolite- Agarose Interface

Agarose target above 4mm of Rexolite

= 36 dB SNR for Non-Contact Detection

(a) Measured response from embedded (b) Measured response from embedded rexolite
rexolitetarget in agarose with enclosure in water with open container(no enclosure)
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H. Nan and A. Arbabian, “Stepped-Frequency Continuous-Wave Microwave-Induced
Thermoacoustic Imaging,” Appl. Phys. Letters, Vol. 104, pp. 224104, 2014.



Early Experiments in Soil

= Pitch-Catch
Measurements 1n Soil
(@ 1MHz)
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