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Why integrated design methods?

* It makes a big difference in performance

e X

Layout only (AEP: 366.4 GWh) Layout + Control (AEP: 431.5 GWh)

Layout + Control AEP: +17.7 % 1}

Deshmukh and Allison (2017)



Why integrated design methods?

* It makes a big difference in performance
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Why integrated desigh methods?

* It makes a big difference in performance

* Helps engineers identify ultimate performance limits
(e.g., fair technology evaluation)

* New design insights for unprecedented systems
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Why integrated desigh methods?

* It makes a big difference in performance
* Helps engineers identify ultimate performance limits

(e.g., fair technology evaluation)
* New design insights for unprecedented systems
'S

% / S1: deflection synergy

Example: identify synergy mechanisms through
systematic numerical studies — Allison, Herber, and
Deshmukh (2015), Deshmukh and Allison (2017)
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Engineers can use the resulting intuition to pursue
S2: expansion and propagation synergy

increased system performance.



What are integrated active system
design (co-design) methods?



What are integrated active system
design (co-design) methods?

* Different from design for controllability

* Beyond control design based on detailed plant models

e Simultaneous consideration of both plant and control
design decisions

* Understanding and full use of design coupling
between physical and control design decisions

/ Design Coupling: Gample: Wind Turbim
Design

Exists if changing one element of a system design impacts
how another system element should be designed

Strong design coupling = integrated design methods

Qake a big difference in system performance \




Co-design problem properties

Simultaneous consideration of multiple sets of design decision variables:

N

Topological Continuous Topological Continuous
Plant Vars Plant Vars Control Vars Control Vars

System Design Variables

Physical (Plant) Design Vars Control Design Vars

Example: robotic
manipulator design

end effecter

(Herber 2017)

7, ~ground

Design decisions: #/arrangement of links, link geometry, joint types,
sensors/actuators, control architecture/laws)

Aim for fully-integrated design: physics, design, subsystem interactions



Design process options:

Conventional Sequential Design

Conceptual design space
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Simultaneous Co-Design

/Simultaneous Co-Design Problem Formulation: f PSS )
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consistently across both design domains




Current state-of-the-art in co-design
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Current state-of-the-art in co-design

Building upon earlier related work:

Control-Structure Multidisciplinary Initial Co-Design
Interaction Design Optimization Theory and Methods
(1980s-1990s) (1990s-present) (early 2000’s)

Previous gaps addressed to produce present significant capabilities:

More general/ Efficient solution
comprehensive using high-fidelity
problem solution simulations



Example method for high-fidelity co-design

problems:

* Derivative Function Surrogate Modeling

e Capitalize on structure of dynamic system design
problems to enable use of accurate simulations
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Conventional SM boundary

HAWT Co-Design: order of magnitude reduction in
computational expense

DT using f(-) DFSMusing f(-) SM using &(-)

No. f(-) evaluations 25160 N/A
ion time 419 min 124 min 618 min
FAST luation time 50.9% 18.8% 87.1% He

Anand P Deshmukh, James T Allison. 'Design of Dynamic Systems using
Surrogate Models of Derivative Functions.' ASME Journal of Mechanical Design,
139(10), p. 101402-101402-12, Aug 2017.
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Current state-of-the-art in co-design

Building upon earlier related work:

Control-Structure Multidisciplinary Initial Co-Design
Interaction Design Optimization Theory and Methods
(1980s-1990s) (1990s-present) (early 2000’s)

Previous gaps addressed to produce present significant capabilities:

More general/ Efficient solution Bridging the gap to
comprehensive using high-fidelity systems engineering
problem solution simulations practice



Bridging the gap to systems engineering practice:

Concept: Use co-design for early-stage plant
development, inform reformulation at later stages

Mechanical : Control /Hardware/Software
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Deshmukh, Herber, and Allison (2015)

Infusing co-design with experimental data
(Chris Vermillion, NC State)

What else? What impedes adoption in practice?



Current state-of-the-art in co-design

Building upon earlier related work:

Control-Structure Multidisciplinary Initial Co-Design
Interaction Design Optimization Theory and Methods
(1980s-1990s) (1990s-present) (early 2000’s)

Previous gaps addressed to produce present significant capabilities:

More general/ Efficient solution Bridging the gap to
comprehensive using high-fidelity systems engineering
problem solution simulations practice

What are we missing? What work is left to be done?
™

-
Not yet adopted widely in

industry (even when

L design coupling is strong) )




Current state-of-the-art in co-design

Building upon earlier related work:

Control- ' E “***al Co-Design
Inte Methods
?
(1080 Whv* 000’s)
* Technical limitations?
Previous] °* Not enough potential value? apabilities:
. (de5|gf\ co.upllng, market impact) L zap to
* Organizational challenges? . :
compr . ineering
orobler. ° Perception/psychology? o

What are we missing? What work is left to be done?
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Current state-of-the-art in co-design

Building upon earlier related work:

Control-Structure Multidisciplinary Initial Co-Design
Interaction Design Optimization Theory and Methods
(1980s-1990s) (1990s-present) (early 2000’s)

Previous gaps addressed to produce present significant capabilities:

More general/ Efficient solution Bridging the gap to
comprehensive using high-fidelity systems engineering
problem solution simulations practice

What are we missing? What work is left to be done?

4 . ) 4 . . )
Not yet adopted widely in No existing demonstration
industry (even when of co-design using a large-

L design coupling is strong) ) L scale engineering system )
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Vision for Co-Design of Renewable
Energy Systems




Vision for Co-Design of Renewable
Energy Systems

Strong present technical capabilities in co-design

e Solution of highly-integrated, comprehensive co-design problems
using high-fidelity simulations (including architecture decisions)

Renewable energy systems have strong design coupling

 Performance gains available, rich design interactions

Industry adoption is limited — what is missing?

* Convincing demonstration? Alignment with existing design
organizations/processes?

ARPA-E: Pivotal opportunity for co-design

* Translate co-design principles and methods into real systems

 Doable: strong design coupling, capable methods, high-impact
application

e Strategic collaborations: discover what advances are needed at
interfaces (realize next level of co-design capability)



